Naiad:
A Timely Dataflow System

Derek G. Murray Frank McSherry Rebecca |saacs
Michael Isard Paul Barham Martin Abadi

Microsoft Research Silicon Valley

Presented by Braden Ehrat

Batch Stream Graph

processing processing processing

Batch Stream Graph

processing processing processing

e Hadoop e Storm e GraphLab
e Dryad e MillWheel e PowerGraph

Batch

processing

Stream
processing

Graph
processing

Timely dataflow with Naiad

Timely dataflow

A new computational model for stream processing

e Supports feedback loops
e Stateful vertices with arbitrary data
e Notifications for end of epoch

User queries

Low-latency query
are received

responses are delivered

Complex processing
incrementally re-
““““““ executes to reflect

Updates to
data arrive

changed data

Low-latency, incremental stream processing

: <100ms
User queries)) Low-latency query
are received Interactive responses are delivered

J

queries

Queries are
joined with
processed data

|

Complex processing
incrementally re-

<1s Ondatesiio | S erati executes to reflect
batch < Ims iterations changed data /

data arrive
updates — =

Dataflow

Stage

Connector

Dataflow: parallelism

Vertex

Edge

Messages

B.SenDBY(edge, message, time)

H

C.ONRecv(edge, message, time)

Messages are delivered asynchronously

Notifications

C.SEnDBY(_, _, time) D.NoTiryAT(time)
g
\—
No more messages at time D.ONREcV(_, _, time) (time)

Notifications support batching

Progress tracking

lllllllllllllllllllllll

Epoch tis complete : E.NoTiryAT(t)

'll‘7 llllllllllllllll
.|= ----- V_J

(=] p=| p={ p-{ >

C.ONRecv(_, _, 1)

C.SenpBY(_, _, t") t'>t

Dataflow: iteration

Progress tracking

C.NoTirrAT(t)

Problem: C depends on its own output

B.SenpBY(_, _, (1, 7))

A.SEnDBY(_, _. 1) C.NoTirrAT(t)

N |) A E.NoTiryAT(1)]

D.SenpBY(1, 6)

Solution: structured timestamps in loops

Simple API

class DistinctCount<S,T> : Vertex<T> {
Dictionary<T, Dictionary<S,int>> counts;
void OnRecv (Edge e, S msg, T time) {
if (!counts.ContainsKey (time)) {
counts[time] = new Dictionary<S,int>();
this.NotifyAt(time) ;
}
if (!counts|[time].ContainsKey (msg)) {
counts[time] [msg] = 0;
this.SendBy (outputl, msg, time);
}
counts[time] [msg]++;
}
void OnNotify (T time) ({
foreach (var pair in counts[time]) this.SendBy (output2, pair, time);

counts.Remove (time) ;

Evaluation

All-to-all exchange
throughput

Naiad exchanges 8-byte
records between all
processes

Aggregate throughput (Gbps)

Shows low, linear overhead

70
60
50

| | | |
Ideal - - - -
.NET Socket — » -

Naiad —— #

Number of computers

Global barrier (Iteration) latency

Evaluates time to achieve
global coordination

No data was exchanged

Effect of micro-straglers seen
at 50-60 nodes

Time per iteration (ms)

2.9
2
1.5
1

| | | | | |
95th/5th percentiles ——
Quartiles —

Median

Number of computers

Real world calculations

Twitter follower graph

e 42M nodes
* 1.5B Edges
« 6GB on disk

Time per iteration (s)

—
o

100

~

I._ . lelid‘Edge —-—

. 1 ‘i ¥ - 3
e E

-l -- —E -l-a-ii

Naiad Pregel — = - -
Naiad Vertex ---a---_
PowerGraph - -e - 3

20 30 40 50 60

Number of computers

PageRank on Twitter followers

Real world calculations

Vowpal Wabbit: Open-
source distributed machine
learning

Speedup vs. single VW

Naiad is on-par with
specialized implementations

O—-NWPAPrUIONOOO

o

10

20 30 40 50

Number of computers

~
o

Query Latency

1000 ¢ T T T

Compute connected
components and top tweets

e 32,000 tweets/s
« 10 queries/s

Response time (ms)
=

r Fresh -------- 1s delay
1 1 | |

30 35 40 45
Time from start of trace (s)

Fresh: queries delayed behind updates
1s delay: querying stale but consistent data

Conclusions

Timely Dataflow in Naiad achieves:

* The performance of specialized frameworks
* Generic flexibility

Open source: http://github.com/MicrosoftResearchSVC/naiad/

