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Timely dataflow

A new computational model for stream processing

e Supports feedback loops
e Stateful vertices with arbitrary data
e Notifications for end of epoch
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Low-latency, incremental stream processing
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Dataflow: parallelism
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Messages

B.SenDBY(edge, message, time)

H

C.ONRecv(edge, message, time)

Messages are delivered asynchronously



Notifications

C.SEnDBY(_, _, time) D.NoTiryAT(time)
g
\—
No more messages at time D.ONREcV(_, _, time)  (time)

Notifications support batching




Progress tracking

lllllllllllllllllllllll

Epoch tis complete : E.NoTiryAT(t)

'll‘7 llllllllllllllll
.|= ----- V_J

(=] p=| p={ p-{ >

C.ONRecv(_, _, 1)

C.SenpBY(_, _, t") t'>t



Dataflow: iteration




Progress tracking

C.NoTirrAT(t)

Problem: C depends on its own output




B.SenpBY(_, _, (1, 7))
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Solution: structured timestamps in loops



Simple API

class DistinctCount<S,T> : Vertex<T> {
Dictionary<T, Dictionary<S,int>> counts;
void OnRecv (Edge e, S msg, T time) {
if (!counts.ContainsKey (time)) {
counts[time] = new Dictionary<S,int>();
this.NotifyAt(time) ;
}
if (!counts|[time].ContainsKey (msg)) {
counts[time] [msg] = 0;
this.SendBy (outputl, msg, time);
}
counts[time] [msg]++;
}
void OnNotify (T time) ({
foreach (var pair in counts[time]) this.SendBy (output2, pair, time);

counts.Remove (time) ;



Evaluation

All-to-all exchange
throughput

Naiad exchanges 8-byte
records between all
processes

Aggregate throughput (Gbps)

Shows low, linear overhead
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Global barrier (Iteration) latency

Evaluates time to achieve
global coordination

No data was exchanged

Effect of micro-straglers seen
at 50-60 nodes

Time per iteration (ms)
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Real world calculations

Twitter follower graph

e 42M nodes
* 1.5B Edges
« 6GB on disk

Time per iteration (s)
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Real world calculations

Vowpal Wabbit: Open-
source distributed machine
learning

Speedup vs. single VW

Naiad is on-par with
specialized implementations
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Query Latency

1000 ¢ T T T

Compute connected
components and top tweets

e 32,000 tweets/s
« 10 queries/s

Response time (ms)
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Fresh: queries delayed behind updates
1s delay: querying stale but consistent data



Conclusions

Timely Dataflow in Naiad achieves:

* The performance of specialized frameworks
* Generic flexibility

Open source: http://github.com/MicrosoftResearchSVC/naiad/



