Naiad: A Timely Dataflow System

Derek G. Murray Michael Isard Frank McSherry Paul Barham Rebecca Isaacs Martin Abadi

Microsoft Research Silicon Valley

Presented by Braden Ehrat

Batch processing

Stream processing

Graph processing

Batch processing

Stream processing

Graph processing

- Hadoop
- Dryad

- Storm
- MillWheel

- GraphLab
- PowerGraph

Timely dataflow

A new computational model for stream processing

- Supports feedback loops
- Stateful vertices with arbitrary data
- Notifications for end of epoch

Low-latency, incremental stream processing

Dataflow

Dataflow: parallelism

Messages

Messages are delivered asynchronously

Notifications

Notifications support batching

Progress tracking

Dataflow: iteration

Problem: C depends on its own output

Solution: structured timestamps in loops

Simple API

```
class DistinctCount<S,T> : Vertex<T> {
     Dictionary<T, Dictionary<S, int>> counts;
     void OnRecv(Edge e, S msg, T time) {
           if (!counts.ContainsKey(time)) {
                counts[time] = new Dictionary<S, int>();
                this.NotifyAt(time);
           if (!counts[time].ContainsKey(msq)) {
                counts[time][msq] = 0;
                this.SendBy(output1, msg, time);
           counts[time][msq]++;
     void OnNotify(T time) {
                 foreach (var pair in counts[time]) this.SendBy(output2, pair, time);
                 counts.Remove(time);
```

Evaluation

All-to-all exchange throughput

Naiad exchanges 8-byte records between all processes

Shows low, linear overhead

Global barrier (Iteration) latency

Evaluates time to achieve global coordination

No data was exchanged

Effect of micro-straglers seen at 50-60 nodes

Real world calculations

Twitter follower graph

- 42M nodes
- 1.5B Edges
- 6GB on disk

PageRank on Twitter followers

Real world calculations

Vowpal Wabbit: Opensource distributed machine learning

Naiad is on-par with specialized implementations

Query Latency

Compute connected components and top tweets

- 32,000 tweets/s
- 10 queries/s

Fresh: queries delayed behind updates

1s delay: querying stale but consistent data

Conclusions

Timely Dataflow in Naiad achieves:

- The performance of specialized frameworks
- Generic flexibility

Open source: http://github.com/MicrosoftResearchSVC/naiad/