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Distributed Algorithms 
Fundamentals – Outline  

I.  Synchronous versus Asynchronous 
systems 

II.  Lamport Timestamps 
III.  Global Snapshots 
IV.  Impossibility of Consensus proof 
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I. Two Different System Models 
•  Synchronous Distributed System 

Ø   Each message is received within bounded time 
Ø   Drift of each process’ local clock has a known bound 
Ø   Each step in a process takes lb < time < ub 
Ex:A collection of processors connected by a communication bus, e.g., a Cray 

supercomputer or a multicore machine 
•  Asynchronous Distributed System 

Ø   No bounds on process execution 
Ø   The drift rate of a clock is arbitrary  
Ø   No bounds on message transmission delays 
Ex:The Internet is an asynchronous distributed system, so are ad-hoc and sensor 

networks 

Ex: 13 us of GPS satellite error caused 12 hours of problems: 
http://www.bbc.com/news/technology-35491962  

q  This is a more general (and thus challenging) model than the synchronous 
system model. A protocol for an asynchronous system will also work for a 
synchronous system (though not vice-versa) 

q  It would be impossible to accurately synchronize the clocks of two 
communicating processes in an asynchronous system 
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II. Logical Clocks  
v But is accurate (or approximate) clock sync. even required? 
v Wouldn’t a logical ordering among events at processes 

suffice? 
v Lamport’s happens-before (→) among events: 

q  On the same process: a → b, if time(a) < time(b)  
q  If p1 sends m to p2: send(m) → receive(m) 
q  If a → b and  b → c then  a → c 

v   Lamport’s logical timestamps preserve causality: 
q  All processes use a local counter (logical clock) with 

initial value of zero 
q Just before each event, the local counter is incremented 

by 1 and assigned to the event as its timestamp 
q  A send (message) event carries its timestamp   
q  For a receive (message) event, the counter is updated by  

 max(receiver’s-local-counter, message-timestamp) + 1 
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Lamport Timestamps 
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•  Logical timestamps preserve causality of events,  

 i.e., a → b ==> TS(a) < TS(b)  
•  Can be used instead of physical timestamps 
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Lamport Timestamps 
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III. Global Snapshot Algorithm  
v  Can you capture (record) the states of all processes 

and communication channels at exactly 10:04:50 
am? 

v  Is it even necessary to take such an exact 
snapshot? 

v  Chandy and Lamport snapshot algorithm: records 
a logical (or causal) snapshot of the system. 

v System Model: 
Ø  No failures, all messages arrive intact, exactly once, 

eventually 
Ø  There is a communication path between every process 

pair 
Ø Communication channels are unidirectional and FIFO-

ordered 
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Chandy and Lamport Snapshot Algorithm  
1. Marker (token message) sending rule for initiator process 

P0 
v    After P0 has recorded its state 

•   for each outgoing channel C, send a marker on C  
2. Marker receiving rule for a process Pk : 

       On receipt of a marker over channel C 
v    if this is first marker being received at Pk 

-  record Pk’s state 
-  record the state of C as “empty” 
-  turn on recording of messages over all other incoming channels 
-  for each outgoing channel C, send a marker on C  

v   else // messages were already being recorded on channel C 
-  turn off recording messages only on channel C, and mark state of C as 

= all the messages recorded over C (since recording was turned on, 
until now) 

q Protocol terminates when every process has received a 
marker from every other process 
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Snapshot  Example 
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1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3; 
turns on recording for channels C21 and C31
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2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {} 
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4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {} 
sends Marker to P1 & P2; turns on recording for channel C23
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5- P2 receives Marker over C32, sets state(C32) = {b}
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Consistent Cut 

Consistent Cut =time-cut across processors and channels so no event  
to the right of the cut “happens-before” an event that is left of the cut 
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IV. Give it a thought 

Have you ever wondered why distributed server 
vendors always only offer solutions that 
promise five-9’s reliability, seven-9’s 
reliability, but never 100%  reliable? 

 
The fault does not lie with Microsoft Corp. or 

Apple Inc. or Cisco 
 
The fault lies in the impossibility of consensus 
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What is Consensus? 
•  N processes 
•  Each process p has  

–  input variable xp : initially either 0 or 1 
–  output variable yp : initially b (can be changed only 

once) 
•  Consensus problem: design a protocol so that at 

the end, either: 
1.  all processes set their output variables to 0  
2.  Or all processes set their output variables to 1 
–  Also, there is at least one initial state that leads to 

each outcome above (non-triviality) 
–  There might be other constraints (Validity=if 

everyone proposes same value that’s what’s decided. 
Integrity = decided value must have been proposed 
by some process) 
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Why is Consensus Important 
•  Many problems in distributed systems are 

equivalent to (or harder than) consensus! 
–  Agreement (harder than consensus, since it can be 

used to solve consensus) 
–  Leader election (select exactly one leader, and every 

alive process knows about it) 
–  Perfect Failure Detection 

•  Consensus using leader election 
     Choose 0 or 1 based on the last bit of the identity of the 

elected leader.  
•  So consensus is a very important problem, and solving it 

would be really useful! 
 
 



Possible or not 
•  In the synchronous system model 

–  Consensus is solvable 
–  Use a multicast protocol in each round to disseminate all known 

values, for (N+1) rounds. At the end, everyone has the same value 
set. 

•  In the asynchronous system model 
–  Consensus is impossible to solve 
–  This means that no matter what protocol/algorithm you suggest, 

there is always a worst-case possible (with failures and message 
delays) such that the system is prevented from reaching consensus 

–  Powerful result (see the FLP proof in Backup slides of this slide 
set) 

–  Subsequently, safe or probabilistic solutions have become quite 
popular to consensus or related problems. 

–  FLP proof in appendix of slides (peruse in your own time) 



Intro to Sensor Networks 
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A Gram of Gold=How Many 
Processors? 

•  Smallest state-of-the-art transistor today is made 
of a single Gold atom 
–  Still in research, not yet in industry. 

•  Pentium P4 contains 42 M transistors 
•  Gold atomic weight is 196 ~ 200.  
•  1 g of Au contains 3 X 10^21 atoms =>  7.5 X 

10^18 P4 processors from a gram of Au => 1 
billion P4’s per person 

•  CPU speedup ~ √(# transistors on die) 
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Sensor Networks Hype, But do 
we really need this technology? 

•  Coal mines have always had CO/CO2 sensors 
•  Industry has used sensors for a long time 
Today… 
•  Excessive Information 

–  Environmentalists collecting data on an island 
–  Army needs to know about enemy troop deployments 
–  Humans in society face information overload 

•  Sensor Networking technology can help filter and 
process this information (And then perhaps 
respond automatically?) 
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Growth of a technology requires 
I.  Hardware 
II.  Operating Systems and Protocols 
III.  Killer applications 

–  Military and Civilian 
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Sensor Nodes 
•  Motivating factors for emergence: applications, 

Moore’s Law (or variants), wireless comm., 
MEMS (micro electro mechanical sensors) 

•  Canonical Sensor Node contains 
1.  Sensor(s) to convert a different energy form to an 

electrical impulse  e.g., to measure temperature 
2.  Microprocessor 
3.  Communications link e.g., wireless 
4.  Power source e.g., battery 
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Laser diode 
III-V process 

Passive CCR comm. 
MEMS/polysilicon 

Sensor 
MEMS/bulk, surface, ... 

Analog I/O, DSP, Control 
COTS CMOS 

Solar cell 
CMOS or III-V 

Thick film battery 
Sol/gel V2O5 

Power capacitor 
Multi-layer ceramic 

1-2 mm 

Example: Berkeley “Motes” or “Smart 
Dust” 

Can you identify the 4  
components here? 
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Example Hardware 

•  Size 
– Golem Dust: 11.7 cu. mm 
– MICA motes: Few inches 

•  Everything on one chip: micro-everything 
–  processor, transceiver, battery, sensors, memory, bus 
– MICA: 4 MHz, 40 Kbps, 4 KB SRAM / 512 KB Serial 

Flash, lasts 7 days at full blast on 2 x AA batteries 
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Examples 

Spec, 3/03  
•  4 KB RAM 
•  4 MHz clock 
•  19.2 Kbps, 40 feet 
•  Supposedly $0.30 

MICA: xbow 
Similar i-motes by Intel 
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Types of Sensors 

•  Micro-sensors (MEMS, Materials, Circuits) 
–  acceleration, vibration, gyroscope, tilt, magnetic, heat, 

motion, pressure, temp, light, moisture, humidity, 
barometric, sound 

•  Chemical 
–  CO, CO2, radon 

•  Biological 
–  pathogen detectors 

•  [Actuators too (mirrors, motors, smart surfaces, 
micro-robots) ] 
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I2C bus – simple technology 

•  Inter-IC connect 
–  e.g., connect sensor to microprocessor 

•  Simple features 
–  Has only 2 wires  
–  Bi-directional 
–  serial data (SDA) and serial clock (SCL) bus  

•  Up to 3.4 Mbps 
•  Developed By Philips 
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Transmission Medium 

•  Spec, MICA: Radio Frequency (RF) 
–  Broadcast medium, routing is “store and forward”, links are 

bidirectional 

•  Smart Dust : smaller size but RF needs high 
frequency => higher power consumption 

     Optical transmission: simpler hardware, lower power 
–  Directional antennas only, broadcast costly 
–  Line of sight required 
–  Switching links costly : mechanical antenna movements 
–  Passive transmission (reflectors) => wormhole routing 
–  Unidirectional links 
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Berkeley Family of Motes 
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Summary: Sensor Node 
•  Small Size : few mm to a few inches 
•  Limited processing and communication 

–  MhZ clock, MB flash, KB RAM, 100’s Kbps 
(wireless) bandwidth 

•  Limited power (MICA: 7-10 days at full blast) 
•  Failure prone nodes and links (due to deployment, 

fab, wireless medium, etc.) 

•  But easy to manufacture and deploy in large 
numbers 

•  Need to offset this with scalable and fault-tolerant 
OS’s and protocols 
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Sensor-node Operating System 
Issues 

–  Size of code and run-time memory footprint 
•  Embedded System OS’s inapplicable: need 

hundreds of KB ROM 
–  Workload characteristics 

•  Continuous ? Bursty ? 
–  Application diversity 

•  Want to reuse sensor nodes 
–  Tasks and processes 

•  Scheduling 
•  Hard and soft real-time 

–  Power consumption 
–  Communication  
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TinyOS design point 

–  Bursty dataflow-driven computations 
–  Multiple data streams => concurrency-intensive 
–  Real-time computations (hard and soft) 
–  Power conservation 
–  Size 
–  Accommodate diverse set of applications 

� TinyOS:  
– Event-driven execution (reactive mote) 
– Modular structure (components) and clean interfaces 
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Programming TinyOS 
•  Use a variant of C called NesC 
•  NesC defines components 
•  A component is either  

–  A module specifying a set of methods and internal storage 
(~like a Java static class) 

   A module corresponds to either a hardware element on the 
chip (e.g., the clock or the LED), or to a user-defined 
software module 

   Modules implement and use interfaces 
–  Or a configuration, a set of other components wired 

together by specifying the unimplemented methods  
•  A complete NesC application then consists of one 

top level configuration 
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A Complete TinyOS Application 

RFM 

Radio byte 

Radio Packet 

i2c 

Temp photo 

Messaging Layer 

clocks bit 

byte 

packet 

Routing Layer 

sensing application application 

HW 

SW 

ADC 

messaging 

routing 
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TinyOS component model 

•  Component specifies: 

•  Component invocation is event driven, arising from 
hardware events 

•  Static allocation only avoids run-time overhead 
•  Scheduling: dynamic, hard (or soft) real-time 
•  Explicit interfaces accommodate different 

applications 

Internal State Internal Tasks 

Commands Events 
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Steps in writing and installing 
your NesC app 

(applies to MICA Mote) 
•  On your PC 

–  Write NesC program  
–  Compile to an executable for the mote 
–  Plug the mote into the parallel port through a connector 

board 
–  Install the program 

•  On the mote 
–  Turn the mote on, and it’s already running your 

application  
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TinyOS Facts 
 

•  Software Footprint   3.4 KB  
•  Power Consumption on Rene Platform 

Transmission Cost: 1 µJ/bit 
Inactive State: 5 µA 
Peak Load: 20 mA 

•  Concurrency support: at peak load CPU is 
asleep 50% of time 

•  Events propagate through stack <40 µS  
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Energy – a critical resource 

•  Power saving modes: 
– MICA: active, idle, sleep 

•  Tremendous variance in energy supply and 
demand 

– Sources: batteries, solar, vibration, AC 
– Requirements: long term deployment v. short 

term deployment, bandwidth intensiveness 
– 1 year on 2xAA batteries => 200 uA average 

current  
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Energy – a critical resource 
Component Rate Startup time Current consumption 

CPU Active 4 MHz N/A 4.6 mA 
CPU Idle 4 MHz 1 us 2.4 mA 
CPU Suspend 32 kHz 4 ms 10 uA 
Radio Transmit 40 kHz 30 ms 12 mA 
Radio Receive 40 kHz 30 ms 3.6 mA 
Photo 2000 Hz 10 ms 1.235 mA 
I2C Temp 2 Hz 500 ms 0.150 mA 
Pressure 10 Hz 500 ms 0.010 mA 
Press Temp 10 Hz 500 ms 0.010 mA 
Humidity 500 Hz 500 ms 0.775 mA 
Thermopile 2000 Hz 200 ms 0.170 mA 
Thermistor 2000 Hz 10 ms 0.126 mA 

Which consumes the most power? 
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TinyOS: More Performance 
Numbers 

•  Byte copy – 8 cycles, 2 microsecond 
•  Post Event – 10 cycles 
•  Context Switch – 51 cycles 
•  Interrupt – h/w: 9 cycles, s/w: 71 cycles 
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TinyOS: Size 
Code size for ad hoc networking 

application 

0

500

1000

1500

2000

2500

3000

3500

B
yt
es

Interrupts
Message Dispatch
Initilization
C-Runtime
Light Sensor
Clock
Scheduler
Led Control
Messaging Layer
Packet Layer
Radio Interface
Routing Application
Radio Byte Encoder

Scheduler:     144 Bytes code 
Totals:  3430 Bytes code 

  226 Bytes data  
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TinyOS: Summary 

Matches both 
•  Hardware requirements 

–  power conservation, size 
•  Application requirements 

–  diversity (through modularity), event-driven, 
real time 
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Discussion 
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System Robustness 
@ Individual sensor-node OS level: 

–  Small, therefore fewer bugs in code 
–  TinyOS: efficient network interfaces and power conservation  
–  Importance? Failure of a few sensor nodes can be made up 

by the distributed protocol 
@ Application-level ? 

–   Need: Designer to know that sensor-node system is flaky 
@ Level of Protocols? 

–  Need for fault-tolerant protocols 
•  Nodes can fail due to deployment/fab; communication medium lossy 

     e.g., ad-hoc routing to base station: 
•  TinyOS’s Spanning Tree Routing: simple but will partition on 

failures 
•  DAG approach - more robust, but more expensive maintenance 

–  Application-specific, or generic but tailorable to application ? 
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Scalability 
@ OS level ? 
     TinyOS:  

–  Modularized and generic interfaces admit a variety of 
applications 

–  Correct direction for future technology 
•  Growth rates: data > storage > CPU > communication > batteries 

–  Move functionality from base station into sensor nodes (In-
network processing) 

–  In sensor nodes, move functionality from s/w to h/w 
@ Application-level ? 

–  Need: Applications written with scalability in mind 
–  Need: Application-generic scalability strategies/paradigms 

@ Level of protocols? 
–  Need: protocols that scale well with thousands of nodes 
–  In-network processing 
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Etcetera 
•  Option: ASICs versus generic-sensors 

–  Performance vs. applicability vs money 
–  Systems for sets of applications with common characteristics 

•  Event-driven model to the extreme:Asynchronous VLSI 
•  Need: Self-sufficient sensor networks 

–  In-network processing, management, monitoring, and healing 
•  Need: Scheduling 

–  Across networked nodes 
–  Mix of real-time tasks and normal tasks 

•  Need: Security, and Privacy 
•  Need: Protocols for anonymous sensor nodes  

–  E.g., Directed Diffusion protocol 
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Summary: Distributed Protocols 
for Sensor Systems… 

…should match with both 
•  Hardware (e.g., energy use, small memory 

footprint, fault-tolerance, scalability) 
•  Application requirements (e.g., generic, 

scalability, fault-tolerance) 
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Other Projects 
•  Berkeley 

–  TOSSIM (+TinyViz) 
•  TinyOS simulator (+ visualization GUI) 

–  TinyDB 
•  Querying a sensor net like a database 

–  Maté, Trickle 
•  Virtual machine for TinyOS motes, code propagation in sensor 

networks for automatic reprogramming, like an active network. 
–  CITRIS 

•  Several projects in other universities too 
–  UI, UCLA: networked vehicle testbed 
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Looking Forward 
•  February 11 onwards: Student led presentations start 

–  Organization of presentation is up to you 
–  Suggested: describe background and motivation for the 

session topic, present an example or two, then get into the 
paper topics 

•  Make sure you read relevant background papers in addition to the 
Main Papers! Look at the reference list in the Main Papers... 

•  Scribes: Split work, look at instructions on webpage 
•  Reviews: You have to submit an online copy 

(Piazza) by noon (on day of class). See website for 
detailed instructions. 

•  Project Discussion meetings (Mandatory) – Starting 
soon 
–  Signup sheet will be on Piazza 



Backup Slides (FLP Impossibility of 
Consensus Proof) 



49 

Let’s Try to Solve Consensus! 

•  Uh, what’s the model? (assumptions!) 
•  Synchronous system: bounds on 

–  Message delays 
–  Max time for each process step 
e.g., multiprocessor (common clock across processors) 

•  Asynchronous system: no such bounds! 
    e.g., The Internet! The Web! 
•  Processes can fail by stopping (crash-stop or crash 

failures) 
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-  For a system with at most f processes crashing 
- All processes are synchronized and operate in “rounds” 

of time 
-  the algorithm proceeds in f+1 rounds (with timeout), 

using reliable communication to all members - Valuesr
i: 

the set of proposed values known to Pi at the beginning 
of round r. 

- Initially Values0
i = {} ; Values1

i = {vi} 
  for round = 1 to f+1 do 
  multicast (Values ri –  Valuesr-1

i) 
   Values r+1

i ß Valuesr
i 

  for each Vj received  
   Values r+1

i = Values r+1
i  ∪ Vj 

  end 
  end 
 di = minimum(Values f+1

i) 

Consensus in a Synchronous System 
 Possible to achieve! 
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Why does the Algorithm Work? 
•  After f+1 rounds, all non-faulty processes have received the same set 

of Values. Why? 
•  Proof by contradiction. 
•  Assume that two non-faulty processes, say pi and pj , differ in their 

final set of values (i.e., after f+1 rounds) 
•  Assume that pi possesses a value v that pj does not possess. 

à pi  must have received v in the very last round  
à Else, pi would have sent v to pj in the last round  

à So, in the last round: a third process, pk, must have sent v to pi, but then 
crashed before sending v to pj. 

à Similarly, a fourth process sending v in the last-but-one round must have 
crashed; otherwise, both pk and pj should have received v. 

à Proceeding in this way, we infer at least one (unique) crash in each of the 
preceding rounds.  

à This means a total of f+1 crashes, while we have assumed at most f 
crashes can occur à contradiction. 



52 

Consensus in an Asynchronous System 

•  Impossible to achieve! 
–  even a single failed process is enough to avoid the 

system from reaching agreement 

•  Proved in a now-famous result by Fischer, Lynch 
and Patterson, 1983  (FLP) 
–  Stopped many distributed system designers dead in 

their tracks 
–  A lot of claims of “reliability” vanished overnight 
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Recall 

•  Each process p has a state 
–  program counter, registers, stack, local variables  
–  input register xp : initially either 0 or 1 
–  output register yp : initially b (undecided) 

•  Consensus Problem: design a protocol so that 
either 
–  all processes set their output variables to 0  
–  Or all processes set their output variables to 1 

•  For impossibility proof, OK to consider (i) more 
restrictive system model, and (ii) easier problem 
–  Why is this is ok? 
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p p’ 

Global Message Buffer 

send(p’,m) 
receive(p’) 

 may return null 

“Network” 
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•  State of a process 
•  Configuration=global state. Collection of states, 

one for each process; alongside state of the global 
buffer. 

•  Each Event (different from Lamport events) 
–  receipt of a message by a process (say p) 
–  processing of message (may change recipient’s state) 
–  sending out of all necessary messages by p 

•  Schedule: sequence of events 
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C 

C’ 

C’’ 

Event e’=(p’,m’) 

Event e’’=(p’’,m’’) 

Configuration C 

Schedule s=(e’,e’’) 

C 

C’’ 

Equivalent 
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Lemma 1 

C 

C’ 

C’’ 

Schedule s1 

Schedule s2 

s2 

s1 

s1 and s2 involve 
disjoint sets of  
receiving processes,  
and are each applicable 
on C 

Disjoint schedules are 
commutative  
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Easier Consensus Problem 

Easier Consensus Problem: some process 
eventually sets yp to be 0 or 1 

Only one process crashes – we’re free to choose 
which one 
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•  Let config. C have a set of decision values 
V reachable from it 
–  If |V| = 2, config. C is bivalent 
–  If |V| = 1, config. C is 0-valent or 1-valent, as is 

the case 

•  Bivalent means outcome is unpredictable  
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What the FLP Proof Shows 

1.  There exists an initial configuration that is 
bivalent 

2.  Starting from a bivalent config., there is 
always another bivalent config. that is 
reachable 
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Lemma 2 
Some initial configuration is bivalent 

• Suppose all initial configurations were either 0-valent or 1-valent. 
• If there are N processes, there are 2N possible initial configurations 
• Place all configurations side-by-side (in a lattice), where  

 adjacent configurations differ in initial xp value  
 for exactly one process. 

 
  1         1          0        1        0         1 

• There has to be some adjacent pair of 1-valent and 0-valent configs. 
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Lemma 2 
Some initial configuration is bivalent 

  1         1          0        1        0         1 

• There has to be some adjacent pair of 1-valent and 0-valent configs. 
• Let the process p, that has a different state across these two configs., be 
   the process that has crashed (i.e., is silent throughout) 

Both initial configs. will 
lead to the same config. 
for the same sequence of 
events 
 
Therefore, both these 
initial configs. are 
bivalent when there is 
such a failure 
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What we’ll Show 

1.  There exists an initial configuration that is 
bivalent 

2.  Starting from a bivalent config., there is 
always another bivalent config. that is 
reachable 
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Lemma 3 
Starting from a bivalent config., there 

is always another bivalent config. 
that is reachable 
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Lemma 3 

A bivalent initial config. 
let e=(p,m) be some event 
   applicable to the initial config. 

Let C be the set of configs. reachable  
  without applying e 



66 

Lemma 3 

A bivalent initial config. 

Let C be the set of configs. reachable  
  without applying e 

 e       e       e           e        e 
Let D be the set of configs.  
  obtained by applying e to some  
  config. in C 

let e=(p,m) be some event 
   applicable to the initial config. 
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Lemma 3 

D 

C 

 e       e       e           e        e 

bivalent 

 [don’t apply  
  event e=(p,m)] 
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Claim. Set D contains a bivalent config. 
Proof.  By contradiction. That is, 

suppose D has only 0- and 1- valent 
states (and no bivalent ones) 

•  There are states D0 and D1 in D, and 
C0 and C1 in C  such that  

 
–  D0 is 0-valent, D1 is 1-valent 
–  D0=C0 foll. by e=(p,m) 
–  D1=C1 foll. by e=(p,m) 
–  And C1 = C0 followed by some event 

e’=(p’,m’) 
 (why?) 

 

D 

C 

 e       e       e           e        e 

bivalent 

 [don’t apply  
  event e=(p,m)] 
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Proof. (contd.) 
 
•  Case I: p’ is not p 

•  Case II: p’ same as p 

D 

C 

 e       e       e           e        e 

bivalent 

 [don’t apply  
  event e=(p,m)] 

C0 

D1 

D0 C1 

e 

e e’ 

e’ 

Why? (Lemma 1) 
But D0 is then bivalent! 
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Proof. (contd.) 
 
•  Case I: p’ is not p 

•  Case II: p’ same as p 

D 

C 

 e       e       e           e        e 

bivalent 

 [don’t apply  
  event e=(p,m)] 

C0 

D1 

D0 
C1 

e e’ 

A 

E0 

e 

sch. s 

sch. s 

E1 

sch. s 

(e’,e) 

e 

sch. s 
•  finite 
•  deciding run from C0 
•  p takes no steps 

But A is then bivalent! 
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Lemma 3 
Starting from a bivalent config., there 

is always another bivalent config. 
that is reachable 
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Putting it all Together 
•  Lemma 2: There exists an initial configuration that 

is bivalent 
•  Lemma 3: Starting from a bivalent config., there is 

always another bivalent config. that is reachable 

•  Theorem (Impossibility of Consensus): There is 
always a run of events in an asynchronous 
distributed system such that the group of processes 
never reach consensus (i.e., stays bivalent all the 
time) 
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Summary  

•  Consensus Problem  
–  Agreement in distributed systems 
–  Solution exists in synchronous system model (e.g., 

supercomputer) 
–  Impossible to solve in an asynchronous system (e.g., 

Internet, Web) 
•  Key idea: with even one (adversarial) crash-stop process 

failure, there are always sequences of events for the system to 
decide any which way 

•  Holds true regardless of whatever algorithm you choose! 
–  FLP impossibility proof 

•  One of the most fundamental results in distributed 
systems  
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Entr. Tidbits: Business Plan 
•  No one will give your company a thought without looking at your business plan. 
•  But that doesn’t mean the business plan has to be comprehensive (or fortune-

telling).  
•  Hotmail kept a public business plan (Javasoft), and their hidden business plan was 

web-based email (which they revealed to only to super-interested VCs). 
•  TiVo’s original business plan was for network servers, and their hidden business 

plan was DVR. 
•  You’ve got to continuously adapt and change your business plan  

–  Geschke (Adobe) received the following advice when several folks asked them for their 
Postscript product rather than their main product (which was printers): “You guys are nuts. 
Throw out your business plan. Your customers-or potential   customers-are telling you what 
your business should be. The business plan  was only used to get you the money. Why don't 
you rewrite a business plan that  is focused just on providing what your customers want?” 

–  Geschke also says why his competitors disappeared: “When we got our money for that original 
business  plan, there were about half a dozen companies who had raised money to do  
something similar. Not the same, but similar. Fortunately, the other five all executed   that 
business plan, and we didn't. And they all disappeared.” 
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Business Plan (contd.) 
•  (Bhatia, Hotmail) “A business  plan is nothing more than your own 

communication to a person not sitting in  front of you-an imaginary 
person who will read it. Try to answer every possible  question that 
that person could raise. That's the description of a business plan,  
really. I didn't take any formal lessons. I just sat down and I wrote 
about the problem   we were trying to solve, and in two paragraphs I 
described the World Wide  Web and how it had grown and what its 
future potential could be. I said, this is  the problem today that we are 
trying to address, this is how we hope to address  it, with this idea. 
This is how we hope to monetize it and this is what page  impressions 
are able to fetch you in the print world. If you translate it into the  
online world, this is how it will happen. And that's it, that was the core 
of our  business plan. I wrote it in one night, and the next day I went to 
work looking really sleepy  and tired. My boss said, "Another one of 
those days of late-night partying?" I'm  like, "Yeah, something like 
that." He said, "Alright, you'll be productive only in  the afternoon. 
Take the morning off." Little did he know that I was actually up  all 
night writing a business plan, not partying.” 
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Business Plan (contd.) 
•  (Levchin, PayPal) “I think the  hallmark of a really 

good entrepreneur is that you're not really going to 
build  one specific company. The goal-at least the 
way I think about entrepreneurship-is   you realize 
one day that you can't really work for anyone else. 
You have  to start your own thing. It almost doesn't 
matter what that thing is. We had six  different 
business plan changes, and then the last one was 
PayPal.” 

•  (Geschke, Adobe) “It didn't matter whether or  not 
some guy at IBM thought it looked good. What 
mattered was someone at  Random House or Time-
Life or Ogilvy & Mather or someone like that 
appreciated   it.” 76 


