
1 1

Indranil Gupta (Indy)
Lecture 7

Distributed Algorithms Fundamentals +
Introduction to Sensor Networks

February 9, 2016

CS 525
Advanced Distributed

Systems
Spring 2016

All Slides © IG

2

CS 525 and Distributed Systems

D.S. Theory

Peer to peer systems
Cloud Computing

Sensor Networks

3

Distributed Algorithms
Fundamentals – Outline

I.  Synchronous versus Asynchronous
systems

II.  Lamport Timestamps
III.  Global Snapshots
IV.  Impossibility of Consensus proof

4

I. Two Different System Models
•  Synchronous Distributed System

Ø  Each message is received within bounded time
Ø  Drift of each process’ local clock has a known bound
Ø  Each step in a process takes lb < time < ub
Ex:A collection of processors connected by a communication bus, e.g., a Cray

supercomputer or a multicore machine
•  Asynchronous Distributed System

Ø  No bounds on process execution
Ø  The drift rate of a clock is arbitrary
Ø  No bounds on message transmission delays
Ex:The Internet is an asynchronous distributed system, so are ad-hoc and sensor

networks

Ex: 13 us of GPS satellite error caused 12 hours of problems:
http://www.bbc.com/news/technology-35491962

q  This is a more general (and thus challenging) model than the synchronous
system model. A protocol for an asynchronous system will also work for a
synchronous system (though not vice-versa)

q  It would be impossible to accurately synchronize the clocks of two
communicating processes in an asynchronous system

5

II. Logical Clocks
v But is accurate (or approximate) clock sync. even required?
v Wouldn’t a logical ordering among events at processes

suffice?
v Lamport’s happens-before (→) among events:

q  On the same process: a → b, if time(a) < time(b)
q  If p1 sends m to p2: send(m) → receive(m)
q  If a → b and b → c then a → c

v  Lamport’s logical timestamps preserve causality:
q  All processes use a local counter (logical clock) with

initial value of zero
q Just before each event, the local counter is incremented

by 1 and assigned to the event as its timestamp
q  A send (message) event carries its timestamp
q  For a receive (message) event, the counter is updated by

 max(receiver’s-local-counter, message-timestamp) + 1

6

Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

7

Lamport Timestamps

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Logical Time
•  Logical timestamps preserve causality of events,

 i.e., a → b ==> TS(a) < TS(b)
•  Can be used instead of physical timestamps

8

Lamport Timestamps

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Logical Time
•  Logical timestamps preserve causality of events,

 i.e., a → b ==> TS(a) < TS(b)
• Other way implication may not be true! (may be concurrent)

logically
concurrent
events

9

III. Global Snapshot Algorithm
v  Can you capture (record) the states of all processes

and communication channels at exactly 10:04:50
am?

v  Is it even necessary to take such an exact
snapshot?

v  Chandy and Lamport snapshot algorithm: records
a logical (or causal) snapshot of the system.

v System Model:
Ø  No failures, all messages arrive intact, exactly once,

eventually
Ø  There is a communication path between every process

pair
Ø Communication channels are unidirectional and FIFO-

ordered

10

Chandy and Lamport Snapshot Algorithm
1. Marker (token message) sending rule for initiator process

P0
v  After P0 has recorded its state

•  for each outgoing channel C, send a marker on C
2. Marker receiving rule for a process Pk :

 On receipt of a marker over channel C
v  if this is first marker being received at Pk

-  record Pk’s state
-  record the state of C as “empty”
-  turn on recording of messages over all other incoming channels
-  for each outgoing channel C, send a marker on C

v  else // messages were already being recorded on channel C
-  turn off recording messages only on channel C, and mark state of C as

= all the messages recorded over C (since recording was turned on,
until now)

q Protocol terminates when every process has received a
marker from every other process

11

Snapshot Example

P1

P2

P3

e1
0

e2
0

e2
3

e3
0

e1
3

a

b

M

e1
1,2

M

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31

e2
1,2,3

M

M

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32

e1
4

3- P1 receives Marker over C21, sets state(C21) = {a}

e3
2,3,4

M

M

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23

e2
4

5- P2 receives Marker over C32, sets state(C32) = {b}

e3
1

6- P3 receives Marker over C23, sets state(C23) = {}

e1
3

7- P1 receives Marker over C31, sets state(C31) = {}

Consistent Cut

Consistent Cut =time-cut across processors and channels so no event
to the right of the cut “happens-before” an event that is left of the cut

12

IV. Give it a thought

Have you ever wondered why distributed server
vendors always only offer solutions that
promise five-9’s reliability, seven-9’s
reliability, but never 100% reliable?

The fault does not lie with Microsoft Corp. or

Apple Inc. or Cisco

The fault lies in the impossibility of consensus

13

What is Consensus?
•  N processes
•  Each process p has

–  input variable xp : initially either 0 or 1
–  output variable yp : initially b (can be changed only

once)
•  Consensus problem: design a protocol so that at

the end, either:
1.  all processes set their output variables to 0
2.  Or all processes set their output variables to 1
–  Also, there is at least one initial state that leads to

each outcome above (non-triviality)
–  There might be other constraints (Validity=if

everyone proposes same value that’s what’s decided.
Integrity = decided value must have been proposed
by some process)

14

Why is Consensus Important
•  Many problems in distributed systems are

equivalent to (or harder than) consensus!
–  Agreement (harder than consensus, since it can be

used to solve consensus)
–  Leader election (select exactly one leader, and every

alive process knows about it)
–  Perfect Failure Detection

•  Consensus using leader election
 Choose 0 or 1 based on the last bit of the identity of the

elected leader.
•  So consensus is a very important problem, and solving it

would be really useful!

Possible or not
•  In the synchronous system model

–  Consensus is solvable
–  Use a multicast protocol in each round to disseminate all known

values, for (N+1) rounds. At the end, everyone has the same value
set.

•  In the asynchronous system model
–  Consensus is impossible to solve
–  This means that no matter what protocol/algorithm you suggest,

there is always a worst-case possible (with failures and message
delays) such that the system is prevented from reaching consensus

–  Powerful result (see the FLP proof in Backup slides of this slide
set)

–  Subsequently, safe or probabilistic solutions have become quite
popular to consensus or related problems.

–  FLP proof in appendix of slides (peruse in your own time)

Intro to Sensor Networks

16

17 17

A Gram of Gold=How Many
Processors?

•  Smallest state-of-the-art transistor today is made
of a single Gold atom
–  Still in research, not yet in industry.

•  Pentium P4 contains 42 M transistors
•  Gold atomic weight is 196 ~ 200.
•  1 g of Au contains 3 X 10^21 atoms => 7.5 X

10^18 P4 processors from a gram of Au => 1
billion P4’s per person

•  CPU speedup ~ √(# transistors on die)

18 18

Sensor Networks Hype, But do
we really need this technology?

•  Coal mines have always had CO/CO2 sensors
•  Industry has used sensors for a long time
Today…
•  Excessive Information

–  Environmentalists collecting data on an island
–  Army needs to know about enemy troop deployments
–  Humans in society face information overload

•  Sensor Networking technology can help filter and
process this information (And then perhaps
respond automatically?)

19 19

Growth of a technology requires
I.  Hardware
II.  Operating Systems and Protocols
III.  Killer applications

–  Military and Civilian

20 20

Sensor Nodes
•  Motivating factors for emergence: applications,

Moore’s Law (or variants), wireless comm.,
MEMS (micro electro mechanical sensors)

•  Canonical Sensor Node contains
1.  Sensor(s) to convert a different energy form to an

electrical impulse e.g., to measure temperature
2.  Microprocessor
3.  Communications link e.g., wireless
4.  Power source e.g., battery

21 21

Laser diode
III-V process

Passive CCR comm.
MEMS/polysilicon

Sensor
MEMS/bulk, surface, ...

Analog I/O, DSP, Control
COTS CMOS

Solar cell
CMOS or III-V

Thick film battery
Sol/gel V2O5

Power capacitor
Multi-layer ceramic

1-2 mm

Example: Berkeley “Motes” or “Smart
Dust”

Can you identify the 4
components here?

22 22

Example Hardware

•  Size
– Golem Dust: 11.7 cu. mm
– MICA motes: Few inches

•  Everything on one chip: micro-everything
–  processor, transceiver, battery, sensors, memory, bus
– MICA: 4 MHz, 40 Kbps, 4 KB SRAM / 512 KB Serial

Flash, lasts 7 days at full blast on 2 x AA batteries

23 23

Examples

Spec, 3/03
•  4 KB RAM
•  4 MHz clock
•  19.2 Kbps, 40 feet
•  Supposedly $0.30

MICA: xbow
Similar i-motes by Intel

24 24

Types of Sensors

•  Micro-sensors (MEMS, Materials, Circuits)
–  acceleration, vibration, gyroscope, tilt, magnetic, heat,

motion, pressure, temp, light, moisture, humidity,
barometric, sound

•  Chemical
–  CO, CO2, radon

•  Biological
–  pathogen detectors

•  [Actuators too (mirrors, motors, smart surfaces,
micro-robots)]

25 25

I2C bus – simple technology

•  Inter-IC connect
–  e.g., connect sensor to microprocessor

•  Simple features
–  Has only 2 wires
–  Bi-directional
–  serial data (SDA) and serial clock (SCL) bus

•  Up to 3.4 Mbps
•  Developed By Philips

26 26

Transmission Medium

•  Spec, MICA: Radio Frequency (RF)
–  Broadcast medium, routing is “store and forward”, links are

bidirectional

•  Smart Dust : smaller size but RF needs high
frequency => higher power consumption

 Optical transmission: simpler hardware, lower power
–  Directional antennas only, broadcast costly
–  Line of sight required
–  Switching links costly : mechanical antenna movements
–  Passive transmission (reflectors) => wormhole routing
–  Unidirectional links

27 27

Berkeley Family of Motes

28 28

Summary: Sensor Node
•  Small Size : few mm to a few inches
•  Limited processing and communication

–  MhZ clock, MB flash, KB RAM, 100’s Kbps
(wireless) bandwidth

•  Limited power (MICA: 7-10 days at full blast)
•  Failure prone nodes and links (due to deployment,

fab, wireless medium, etc.)

•  But easy to manufacture and deploy in large
numbers

•  Need to offset this with scalable and fault-tolerant
OS’s and protocols

29 29

Sensor-node Operating System
Issues

–  Size of code and run-time memory footprint
•  Embedded System OS’s inapplicable: need

hundreds of KB ROM
–  Workload characteristics

•  Continuous ? Bursty ?
–  Application diversity

•  Want to reuse sensor nodes
–  Tasks and processes

•  Scheduling
•  Hard and soft real-time

–  Power consumption
–  Communication

30 30

TinyOS design point

–  Bursty dataflow-driven computations
–  Multiple data streams => concurrency-intensive
–  Real-time computations (hard and soft)
–  Power conservation
–  Size
–  Accommodate diverse set of applications

� TinyOS:
– Event-driven execution (reactive mote)
– Modular structure (components) and clean interfaces

31 31

Programming TinyOS
•  Use a variant of C called NesC
•  NesC defines components
•  A component is either

–  A module specifying a set of methods and internal storage
(~like a Java static class)

 A module corresponds to either a hardware element on the
chip (e.g., the clock or the LED), or to a user-defined
software module

 Modules implement and use interfaces
–  Or a configuration, a set of other components wired

together by specifying the unimplemented methods
•  A complete NesC application then consists of one

top level configuration

32 32

A Complete TinyOS Application

RFM

Radio byte

Radio Packet

i2c

Temp photo

Messaging Layer

clocks bit

byte

packet

Routing Layer

sensing application application

HW

SW

ADC

messaging

routing

33 33

TinyOS component model

•  Component specifies:

•  Component invocation is event driven, arising from
hardware events

•  Static allocation only avoids run-time overhead
•  Scheduling: dynamic, hard (or soft) real-time
•  Explicit interfaces accommodate different

applications

Internal State Internal Tasks

Commands Events

34 34

Steps in writing and installing
your NesC app

(applies to MICA Mote)
•  On your PC

–  Write NesC program
–  Compile to an executable for the mote
–  Plug the mote into the parallel port through a connector

board
–  Install the program

•  On the mote
–  Turn the mote on, and it’s already running your

application

35 35

TinyOS Facts

•  Software Footprint 3.4 KB
•  Power Consumption on Rene Platform

Transmission Cost: 1 µJ/bit
Inactive State: 5 µA
Peak Load: 20 mA

•  Concurrency support: at peak load CPU is
asleep 50% of time

•  Events propagate through stack <40 µS

36 36

Energy – a critical resource

•  Power saving modes:
– MICA: active, idle, sleep

•  Tremendous variance in energy supply and
demand

– Sources: batteries, solar, vibration, AC
– Requirements: long term deployment v. short

term deployment, bandwidth intensiveness
– 1 year on 2xAA batteries => 200 uA average

current

37 37

Energy – a critical resource
Component Rate Startup time Current consumption

CPU Active 4 MHz N/A 4.6 mA
CPU Idle 4 MHz 1 us 2.4 mA
CPU Suspend 32 kHz 4 ms 10 uA
Radio Transmit 40 kHz 30 ms 12 mA
Radio Receive 40 kHz 30 ms 3.6 mA
Photo 2000 Hz 10 ms 1.235 mA
I2C Temp 2 Hz 500 ms 0.150 mA
Pressure 10 Hz 500 ms 0.010 mA
Press Temp 10 Hz 500 ms 0.010 mA
Humidity 500 Hz 500 ms 0.775 mA
Thermopile 2000 Hz 200 ms 0.170 mA
Thermistor 2000 Hz 10 ms 0.126 mA

Which consumes the most power?

38 38

TinyOS: More Performance
Numbers

•  Byte copy – 8 cycles, 2 microsecond
•  Post Event – 10 cycles
•  Context Switch – 51 cycles
•  Interrupt – h/w: 9 cycles, s/w: 71 cycles

39 39

TinyOS: Size
Code size for ad hoc networking

application

0

500

1000

1500

2000

2500

3000

3500

B
yt
es

Interrupts
Message Dispatch
Initilization
C-Runtime
Light Sensor
Clock
Scheduler
Led Control
Messaging Layer
Packet Layer
Radio Interface
Routing Application
Radio Byte Encoder

Scheduler: 144 Bytes code
Totals: 3430 Bytes code

 226 Bytes data

40 40

TinyOS: Summary

Matches both
•  Hardware requirements

–  power conservation, size
•  Application requirements

–  diversity (through modularity), event-driven,
real time

41 41

Discussion

42 42

System Robustness
@ Individual sensor-node OS level:

–  Small, therefore fewer bugs in code
–  TinyOS: efficient network interfaces and power conservation
–  Importance? Failure of a few sensor nodes can be made up

by the distributed protocol
@ Application-level ?

–  Need: Designer to know that sensor-node system is flaky
@ Level of Protocols?

–  Need for fault-tolerant protocols
•  Nodes can fail due to deployment/fab; communication medium lossy

 e.g., ad-hoc routing to base station:
•  TinyOS’s Spanning Tree Routing: simple but will partition on

failures
•  DAG approach - more robust, but more expensive maintenance

–  Application-specific, or generic but tailorable to application ?

43 43

Scalability
@ OS level ?
 TinyOS:

–  Modularized and generic interfaces admit a variety of
applications

–  Correct direction for future technology
•  Growth rates: data > storage > CPU > communication > batteries

–  Move functionality from base station into sensor nodes (In-
network processing)

–  In sensor nodes, move functionality from s/w to h/w
@ Application-level ?

–  Need: Applications written with scalability in mind
–  Need: Application-generic scalability strategies/paradigms

@ Level of protocols?
–  Need: protocols that scale well with thousands of nodes
–  In-network processing

44 44

Etcetera
•  Option: ASICs versus generic-sensors

–  Performance vs. applicability vs money
–  Systems for sets of applications with common characteristics

•  Event-driven model to the extreme:Asynchronous VLSI
•  Need: Self-sufficient sensor networks

–  In-network processing, management, monitoring, and healing
•  Need: Scheduling

–  Across networked nodes
–  Mix of real-time tasks and normal tasks

•  Need: Security, and Privacy
•  Need: Protocols for anonymous sensor nodes

–  E.g., Directed Diffusion protocol

45 45

Summary: Distributed Protocols
for Sensor Systems…

…should match with both
•  Hardware (e.g., energy use, small memory

footprint, fault-tolerance, scalability)
•  Application requirements (e.g., generic,

scalability, fault-tolerance)

46 46

Other Projects
•  Berkeley

–  TOSSIM (+TinyViz)
•  TinyOS simulator (+ visualization GUI)

–  TinyDB
•  Querying a sensor net like a database

–  Maté, Trickle
•  Virtual machine for TinyOS motes, code propagation in sensor

networks for automatic reprogramming, like an active network.
–  CITRIS

•  Several projects in other universities too
–  UI, UCLA: networked vehicle testbed

47 47

Looking Forward
•  February 11 onwards: Student led presentations start

–  Organization of presentation is up to you
–  Suggested: describe background and motivation for the

session topic, present an example or two, then get into the
paper topics

•  Make sure you read relevant background papers in addition to the
Main Papers! Look at the reference list in the Main Papers...

•  Scribes: Split work, look at instructions on webpage
•  Reviews: You have to submit an online copy

(Piazza) by noon (on day of class). See website for
detailed instructions.

•  Project Discussion meetings (Mandatory) – Starting
soon
–  Signup sheet will be on Piazza

Backup Slides (FLP Impossibility of
Consensus Proof)

49

Let’s Try to Solve Consensus!

•  Uh, what’s the model? (assumptions!)
•  Synchronous system: bounds on

–  Message delays
–  Max time for each process step
e.g., multiprocessor (common clock across processors)

•  Asynchronous system: no such bounds!
 e.g., The Internet! The Web!
•  Processes can fail by stopping (crash-stop or crash

failures)

50

-  For a system with at most f processes crashing
- All processes are synchronized and operate in “rounds”

of time
-  the algorithm proceeds in f+1 rounds (with timeout),

using reliable communication to all members - Valuesr
i:

the set of proposed values known to Pi at the beginning
of round r.

- Initially Values0
i = {} ; Values1

i = {vi}
 for round = 1 to f+1 do
 multicast (Values ri – Valuesr-1

i)
 Values r+1

i ß Valuesr
i

 for each Vj received
 Values r+1

i = Values r+1
i ∪ Vj

 end
 end
 di = minimum(Values f+1

i)

Consensus in a Synchronous System
 Possible to achieve!

51

Why does the Algorithm Work?
•  After f+1 rounds, all non-faulty processes have received the same set

of Values. Why?
•  Proof by contradiction.
•  Assume that two non-faulty processes, say pi and pj , differ in their

final set of values (i.e., after f+1 rounds)
•  Assume that pi possesses a value v that pj does not possess.

à pi must have received v in the very last round
à Else, pi would have sent v to pj in the last round

à So, in the last round: a third process, pk, must have sent v to pi, but then
crashed before sending v to pj.

à Similarly, a fourth process sending v in the last-but-one round must have
crashed; otherwise, both pk and pj should have received v.

à Proceeding in this way, we infer at least one (unique) crash in each of the
preceding rounds.

à This means a total of f+1 crashes, while we have assumed at most f
crashes can occur à contradiction.

52

Consensus in an Asynchronous System

•  Impossible to achieve!
–  even a single failed process is enough to avoid the

system from reaching agreement

•  Proved in a now-famous result by Fischer, Lynch
and Patterson, 1983 (FLP)
–  Stopped many distributed system designers dead in

their tracks
–  A lot of claims of “reliability” vanished overnight

53

Recall

•  Each process p has a state
–  program counter, registers, stack, local variables
–  input register xp : initially either 0 or 1
–  output register yp : initially b (undecided)

•  Consensus Problem: design a protocol so that
either
–  all processes set their output variables to 0
–  Or all processes set their output variables to 1

•  For impossibility proof, OK to consider (i) more
restrictive system model, and (ii) easier problem
–  Why is this is ok?

54

p p’

Global Message Buffer

send(p’,m)
receive(p’)

 may return null

“Network”

55

•  State of a process
•  Configuration=global state. Collection of states,

one for each process; alongside state of the global
buffer.

•  Each Event (different from Lamport events)
–  receipt of a message by a process (say p)
–  processing of message (may change recipient’s state)
–  sending out of all necessary messages by p

•  Schedule: sequence of events

56

C

C’

C’’

Event e’=(p’,m’)

Event e’’=(p’’,m’’)

Configuration C

Schedule s=(e’,e’’)

C

C’’

Equivalent

57

Lemma 1

C

C’

C’’

Schedule s1

Schedule s2

s2

s1

s1 and s2 involve
disjoint sets of
receiving processes,
and are each applicable
on C

Disjoint schedules are
commutative

58

Easier Consensus Problem

Easier Consensus Problem: some process
eventually sets yp to be 0 or 1

Only one process crashes – we’re free to choose
which one

59

•  Let config. C have a set of decision values
V reachable from it
–  If |V| = 2, config. C is bivalent
–  If |V| = 1, config. C is 0-valent or 1-valent, as is

the case

•  Bivalent means outcome is unpredictable

60

What the FLP Proof Shows

1.  There exists an initial configuration that is
bivalent

2.  Starting from a bivalent config., there is
always another bivalent config. that is
reachable

61

Lemma 2
Some initial configuration is bivalent

• Suppose all initial configurations were either 0-valent or 1-valent.
• If there are N processes, there are 2N possible initial configurations
• Place all configurations side-by-side (in a lattice), where

 adjacent configurations differ in initial xp value
 for exactly one process.

 1 1 0 1 0 1

• There has to be some adjacent pair of 1-valent and 0-valent configs.

62

Lemma 2
Some initial configuration is bivalent

 1 1 0 1 0 1

• There has to be some adjacent pair of 1-valent and 0-valent configs.
• Let the process p, that has a different state across these two configs., be
 the process that has crashed (i.e., is silent throughout)

Both initial configs. will
lead to the same config.
for the same sequence of
events

Therefore, both these
initial configs. are
bivalent when there is
such a failure

63

What we’ll Show

1.  There exists an initial configuration that is
bivalent

2.  Starting from a bivalent config., there is
always another bivalent config. that is
reachable

64

Lemma 3
Starting from a bivalent config., there

is always another bivalent config.
that is reachable

65

Lemma 3

A bivalent initial config.
let e=(p,m) be some event
 applicable to the initial config.

Let C be the set of configs. reachable
 without applying e

66

Lemma 3

A bivalent initial config.

Let C be the set of configs. reachable
 without applying e

 e e e e e
Let D be the set of configs.
 obtained by applying e to some
 config. in C

let e=(p,m) be some event
 applicable to the initial config.

67

Lemma 3

D

C

 e e e e e

bivalent

 [don’t apply
 event e=(p,m)]

68

Claim. Set D contains a bivalent config.
Proof. By contradiction. That is,

suppose D has only 0- and 1- valent
states (and no bivalent ones)

•  There are states D0 and D1 in D, and
C0 and C1 in C such that

–  D0 is 0-valent, D1 is 1-valent
–  D0=C0 foll. by e=(p,m)
–  D1=C1 foll. by e=(p,m)
–  And C1 = C0 followed by some event

e’=(p’,m’)
 (why?)

D

C

 e e e e e

bivalent

 [don’t apply
 event e=(p,m)]

69

Proof. (contd.)

•  Case I: p’ is not p

•  Case II: p’ same as p

D

C

 e e e e e

bivalent

 [don’t apply
 event e=(p,m)]

C0

D1

D0 C1

e

e e’

e’

Why? (Lemma 1)
But D0 is then bivalent!

70

Proof. (contd.)

•  Case I: p’ is not p

•  Case II: p’ same as p

D

C

 e e e e e

bivalent

 [don’t apply
 event e=(p,m)]

C0

D1

D0
C1

e e’

A

E0

e

sch. s

sch. s

E1

sch. s

(e’,e)

e

sch. s
•  finite
•  deciding run from C0
•  p takes no steps

But A is then bivalent!

71

Lemma 3
Starting from a bivalent config., there

is always another bivalent config.
that is reachable

72

Putting it all Together
•  Lemma 2: There exists an initial configuration that

is bivalent
•  Lemma 3: Starting from a bivalent config., there is

always another bivalent config. that is reachable

•  Theorem (Impossibility of Consensus): There is
always a run of events in an asynchronous
distributed system such that the group of processes
never reach consensus (i.e., stays bivalent all the
time)

73

Summary

•  Consensus Problem
–  Agreement in distributed systems
–  Solution exists in synchronous system model (e.g.,

supercomputer)
–  Impossible to solve in an asynchronous system (e.g.,

Internet, Web)
•  Key idea: with even one (adversarial) crash-stop process

failure, there are always sequences of events for the system to
decide any which way

•  Holds true regardless of whatever algorithm you choose!
–  FLP impossibility proof

•  One of the most fundamental results in distributed
systems

74

Entr. Tidbits: Business Plan
•  No one will give your company a thought without looking at your business plan.
•  But that doesn’t mean the business plan has to be comprehensive (or fortune-

telling).
•  Hotmail kept a public business plan (Javasoft), and their hidden business plan was

web-based email (which they revealed to only to super-interested VCs).
•  TiVo’s original business plan was for network servers, and their hidden business

plan was DVR.
•  You’ve got to continuously adapt and change your business plan

–  Geschke (Adobe) received the following advice when several folks asked them for their
Postscript product rather than their main product (which was printers): “You guys are nuts.
Throw out your business plan. Your customers-or potential customers-are telling you what
your business should be. The business plan was only used to get you the money. Why don't
you rewrite a business plan that is focused just on providing what your customers want?”

–  Geschke also says why his competitors disappeared: “When we got our money for that original
business plan, there were about half a dozen companies who had raised money to do
something similar. Not the same, but similar. Fortunately, the other five all executed that
business plan, and we didn't. And they all disappeared.”

74

75

Business Plan (contd.)
•  (Bhatia, Hotmail) “A business plan is nothing more than your own

communication to a person not sitting in front of you-an imaginary
person who will read it. Try to answer every possible question that
that person could raise. That's the description of a business plan,
really. I didn't take any formal lessons. I just sat down and I wrote
about the problem we were trying to solve, and in two paragraphs I
described the World Wide Web and how it had grown and what its
future potential could be. I said, this is the problem today that we are
trying to address, this is how we hope to address it, with this idea.
This is how we hope to monetize it and this is what page impressions
are able to fetch you in the print world. If you translate it into the
online world, this is how it will happen. And that's it, that was the core
of our business plan. I wrote it in one night, and the next day I went to
work looking really sleepy and tired. My boss said, "Another one of
those days of late-night partying?" I'm like, "Yeah, something like
that." He said, "Alright, you'll be productive only in the afternoon.
Take the morning off." Little did he know that I was actually up all
night writing a business plan, not partying.”

75

76

Business Plan (contd.)
•  (Levchin, PayPal) “I think the hallmark of a really

good entrepreneur is that you're not really going to
build one specific company. The goal-at least the
way I think about entrepreneurship-is you realize
one day that you can't really work for anyone else.
You have to start your own thing. It almost doesn't
matter what that thing is. We had six different
business plan changes, and then the last one was
PayPal.”

•  (Geschke, Adobe) “It didn't matter whether or not
some guy at IBM thought it looked good. What
mattered was someone at Random House or Time-
Life or Ogilvy & Mather or someone like that
appreciated it.” 76

