
1

CS525
Advanced Distributed Systems

Spring 2016

Indranil Gupta (Indy)
Lecture 1

January 19, 2016

All Slides © IG

2

What is a Distributed System?
(examples)

The Internet Gnutella peer to peer system

Datacenter/Cloud A Sensor Network

3

Can you name some examples of
Operating Systems?

4

Can you name some examples of
Operating Systems?

…
Linux WinXP Vista Unix FreeBSD Mac OSX
2K Aegis Scout Hydra Mach SPIN
OS/2 Express Flux Hope Spring
AntaresOS EOS LOS SQOS LittleOS TINOS
PalmOS WinCE TinyOS
…

5

What is an Operating System?

6

What is an Operating System?

•  User interface to hardware (device driver)
•  Provides abstractions (processes, file system)
•  Resource manager (scheduler)
•  Means of communication (networking)
•  …

7

FOLDOC definition
•  The low-level software which handles the interface to peripheral hardware,

schedules tasks, allocates storage, and presents a default interface to the user
when no application program is running.

•  The OS may be split into a kernel which is always present and various system
programs which use facilities provided by the kernel to perform higher-level
house-keeping tasks, often acting as servers in a client-server relationship.

•  Some would include a graphical user interface and window system as part of
the OS, others would not. The operating system loader, BIOS, or other
firmware required at boot time or when installing the operating system would
generally not be considered part of the operating system, though this
distinction is unclear in the case of a roamable operating system such as RISC
OS.

•  The facilities an operating system provides and its general design philosophy
exert an extremely strong influence on programming style and on the technical
cultures that grow up around the machines on which it runs.

8

Can you name some examples of
Distributed Systems?

9

Can you name some examples of
Distributed Systems?

•  Client-server (e.g., NFS)
•  The Internet
•  The Web
•  A sensor network
•  DNS
•  BitTorrent (peer to peer overlay)
•  Datacenters
•  Hadoop

10

What is a Distributed System?

11

FOLDOC definition

 A collection of (probably heterogeneous) automata whose distribution
is transparent to the user so that the system appears as one local
machine. This is in contrast to a network, where the user is aware that
there are several machines, and their location, storage replication, load
balancing and functionality is not transparent. Distributed systems
usually use some kind of client-server organization.

12

Textbook definitions
•  A distributed system is a collection of independent

computers that appear to the users of the system as
a single computer.
 [Andrew Tanenbaum]

•  A distributed system is several computers doing

something together. Thus, a distributed system has
three primary characteristics: multiple computers,
interconnections, and shared state.
 [Michael Schroeder]

13

Unsatisfactory

•  Why are these definitions short?
•  Why do these definitions look inadequate to us?
•  Because we are interested in the insides of a

distributed system
–  algorithmics
–  design and implementation
–  maintenance
–  study

14

 I shall not today attempt further to define the kinds of
material I understand to be embraced within that shorthand
description; and perhaps I could never succeed in
intelligibly doing so. But I know it when I see it…

 [Potter Stewart, Associate Justice, US Supreme Court
(talking about his interpretation of a technical term laid
down in the law, case Jacobellis versus Ohio 1964)]

15

A working definition for us
 A distributed system is a collection of entities, each
of which is autonomous, programmable,
asynchronous and failure-prone, and which
communicate through an unreliable communication
medium.

•  Our interest in distributed systems involves

–  algorithmics, design and implementation, maintenance,
study

•  Entity=a process on a device (PC, PDA, mote)
•  Communication Medium=Wired or wireless network

16

A range of interesting problems
for Distributed System designers

• 
•  P2P systems [Gnutella, Kazaa, BitTorrent]
•  Cloud Infrastructures [AWS, Azure, Google cloud]
•  Cloud Storage [Key-value stores, NoSQL, BigTable]
•  Cloud Programming [MapReduce, Pig, Hive, Storm,

Pregel]
•  Coordination [Paxos]
•  Routing [Sensor Networks, Internet]
• 

17

A range of challenges

• 
•  Failures: no longer the exception, but rather

a norm
•  Scalability: 1000s of machines, Terabytes of

data
•  Asynchrony: clock skew and clock drift
•  Security: of data, users, computations, etc.
• 

18

Multicast

19

Multicast

Distributed
Group of
 “Nodes”=
Processes
at Internet-
based hosts

Node with a piece of information
to be communicated to everyone

20

Fault-tolerance and Scalability
Multicast sender

Multicast Protocol

n  Nodes may crash
n  Packets may
 be dropped
n  1000’s of nodes

X

X

21

Centralized

UDP/TCP packets

n  Simplest
 implementation

n  Problems?

22

Tree-Based

UDP/TCP packets

n  e.g., IPmulticast, SRM
 RMTP, TRAM,TMTP
n Lower load per node
n Tree setup
 and maintenance

n  Problems?

23

A Third Approach
Multicast sender

24

Gossip messages (UDP)

Periodically, transmit to
b random targets

25

Other nodes do same
after receiving multicast Gossip messages (UDP)

26

27

“Epidemic” Multicast (or “Gossip”)

 Protocol rounds (local clock)
 b random targets per round

 Uninfected

 Infected

Gossip Message (UDP)

28

Properties

Claim that this simple protocol
•  Is lightweight in large groups
•  Spreads a multicast quickly
•  Is highly fault-tolerant

29

Analysis
From old mathematical branch of Epidemiology

[Bailey 75]
•  Population of (n+1) individuals mixing

homogeneously
•  Contact rate between any individual pair is
•  At any time, each individual is either uninfected

(numbering x) or infected (numbering y)
•  Then,

 and at all times
•  Infected–uninfected contact turns latter infected,

and it stays infected

β

1, 00 == ynx
1+=+ nyx

30

Analysis (contd.)
•  Continuous time process
•  Then

 (why?)

 with solution

 (correct? can you derive it?)

xy
dt
dx

β−=

tntn ne
ny

en
nnx)1()1(1

)1(,)1(
+−+ +

+
=

+

+
= ββ

31

Epidemic Multicast

 Protocol rounds (local clock)
 b random targets per round

 Uninfected

 Infected

Gossip Message (UDP)

32

Epidemic Multicast Analysis

 (why?)

 Substituting, at time t=clog(n), num. infected is

 (correct? can you derive it?)

n
b

=β

2

1)1(
−

−+≈ cbn
ny

33

Analysis (contd.)

•  Set c,b to be small numbers independent of n
•  Within clog(n) rounds, [low latency]

–  all but number of nodes receive the
multicast
 [reliability]

–  each node has transmitted no more than cblog(n)
gossip messages [lightweight]

2

1
−cbn

34

Fault-tolerance

•  Packet loss
–  50% packet loss: analyze with b replaced with

b/2
– To achieve same reliability as 0% packet loss,

takes twice as many rounds
•  Node failure

–  50% of nodes fail: analyze with n replaced with
n/2 and b replaced with b/2

– Same as above

35

Fault-tolerance
•  With failures, is it possible that the epidemic might

die out quickly?
•  Possible, but improbable:

–  Once a few nodes are infected, with high probability, the
epidemic will not die out

–  So the analysis we saw in the previous slides is actually
behavior with high probability

[Galey and Dani 98]
•  Think: why do rumors spread so fast? why do

infectious diseases cascade quickly into epidemics?
why does a virus or worm spread rapidly?

36

So,…

•  Is this all theory and a bunch of equations?
•  Or are there implementations yet?

37

Some implementations

•  Clearinghouse and Bayou projects: email
and database transactions [PODC ‘87]

•  refDBMS system [Usenix ‘94]
•  Bimodal Multicast [ACM TOCS ‘99]
•  Sensor networks [Li Li et al, Infocom ’02,

and PBBF, ICDCS ‘05]
•  Usenet NNTP (Network News Transport

Protocol) ! [‘79]
•  AWS EC2 and S3 Cloud (rumored). [’00s]

38

NNTP Inter-server Protocol

Server retains news posts for a while,
 transmits them lazily, deletes them after a while

1.  Each client uploads and downloads news posts
 from a news server

2.

39

We’ll cover some of these other
implementations during the course

•  But let’s dwell on the big picture of the

course

40

Angles of Distributed Systems

Distributed System (D.S.) Theory

Infrastructured D.S.’s
e.g., Internet-based

Non-infrastructured D.S.’s
e.g., ad-hoc network based

41

CS 525 and Distributed Systems

D.S. Theory

Peer to peer systems
Cloud Computing

Sensor Networks

42

CS 525 and Distributed Systems
Causality, snapshots, consensus,…

…DHTs, apps, …

…Smart Dust, TinyOS,
Aggregation,
In-network processing…

…MapReduce,
NoSQL, …

43

Interesting: Area Overlaps

Epidemics
NNTP
Gossip-based ad-hoc routing

44

Interesting: Area Overlaps

The Internet Gnutella peer to peer system

Clouds A Sensor Network

Do projects that are either entrepreneurial or research

Research Project
•  Your project has to be related to distributed systems
•  Must show keen awareness of the current state of the art
•  Must solve thoroughly at least one practical research

problem
•  Must have innovative ideas and originality (algorithms)
•  Must build a real system and evaluate it in deployment
•  You will write a conference-quality research paper as a part

of your project
•  We will submit the best papers from this class to top

conferences/workshops in the area of distributed systems
–  Past versions of CS525 highly successful in getting papers into

conferences and journals, and have won awards (see course website)

•  To help you get insight into the current and bleeding edge of
d.s. research, we will read 2 research papers per class 45

Entrepreneurial Project
•  Proposes new ideas that can be accommodated into a (your

own!) startup
–  Company
–  Or non-profit

•  Has to be a marketable product or services to users
–  Need to write a short Business Plan

•  You don’t actually need to found a company; you need to
develop ideas for it. What you do later with it is up to you
only.

•  EnterpriseWorks incubator at Illinois
•  Has to use or leverage concepts from the CS525 class
•  To help you get leverage the current and bleeding edge of

d.s. research, we will read 2 research papers per class
46

Research vs. Users
•  Initial direction =/= Final outcome

–  Apple I and II (Wozniak and Jobs): Research challenge was to
minimize cost of chips in the PC. Users loved Apple II and III because
it had color and it had flexibility for users to write their own software
(until then, every new game was done in hardware!)

–  Flickr (Caterina Fake): Initially were writing “Game Nevernding”.
Research challenges included scalability. Users loved it because of
social network, and tagging. Tagging enabled groups (Squared Circle
group), news feeds, and find photos of anything.

–  TiVo (Mike Ramsay): Initially were writing a network server for video
content. Research challenges included disk management, n/w
management, security. Users were amazed by pausing live TV and
being given significant flexibility but without needing to be a “techie”.

–  Mosaic (Andreesen) was originally an NSF-funded project at UIUC,
and then became a startup

•  Be ready to change direction (“pivot”)
•  Both in research project and entrepreneurial project 47

Materials for Course
•  All readings available on the course website

(you don’t need to buy any textbook or
material)

•  Lots of new papers!
•  The Spring 2016 schedule has roughly 77%

new papers for the student sessions (28/36)
compared to the last version of CS525
(SP15).

48

Project Buildup
•  To ensure semester-wide progress, project is

structured into systematic stages:
–  Initial meeting in Feb (+ open office hours)
– Survey report due late-Feb (proposal + survey)
– Midterm report due Mar-end (first prototype of

system built + initial experimental results)
– Final report due early May (final version of

project and paper)
•  Project groups: 2-3 students

49

50

Let’s Look at the Course
Information Sheet… •  No exams

•  Paper Reading
–  Presentations from Feb 11th onwards

•  Per session: Two students presenting + 1 student scribing
–  Everyone else: reviews (2 papers per lecture,from Feb 11th onwards)
–  See instructions on website for presentations and reviews

•  Project
–  May get you access to a few VMs on the CS VM server farm
–  Limited access to multiple testbeds: PlanetLab, Emulab

•  Ask us!

•  Class Participation a must (and fun!)
•  TA: Le Xu and Luke Leslie (emails on website)
•  My office hours: right after lecture/class (3112 SC), until

about 4.00 pm
•  Please read instructions on course website – you’re

responsible for following them!

51

Things for you to do today

•  Look at the course website
•  Follow “Schedule / Papers and Presentations link”

and read instructions
–  http://courses.engr.illinois.edu/cs525/
–  Need to sign up for a presentation slot by Jan 28

•  Take a look at conference papers arising out of
previous versions of this course (CS598IG/CS525)
–  Many CS525 project papers published in conferences

and journals

Prerequisites
•  Background in OS’es is required (CS241/

CS423)
•  Distributed Systems/Algorithms is

recommended
–  If you haven’t taken CS425/ECE428 or

ECE526, then …
– … you should highly consider taking the

Coursera course on Cloud Computing Concepts
(Parts 1 and 2). It’s a free course.

52

53

Next Lecture

•  Cloud Computing
– Take a look at all papers on website for that

session
– Read at least one of those papers completely
– Try to read all of them completely
–  (no reviews required yet)

54

Backup Slides

55

Analysis (contd.)

 (why?)

 Substituting, at time t=clog(n)

n
b

=β

1
)log()1(11

1

1

1

−

+−
+

+
≈

+

+
=

cb
ncn

n
b

n

n

ne

ny

)11)(1(1−−+≈ cbn
n

2

1)1(
−

−+≈ cbn
n

