
IronFleet:
Proving Practical Distributed Systems Correct

Chris Hawblitzel Jon Howell Manos Kapritsos Jacob R. Lorch Bryan Parno
Michael L. Roberts Srinath Setty Brian Zill

Presenter: Oreoluwa Alebiosu

1

Iron Fleet

● Build complex, efficient distributed systems whose implementations

are provably safe and live.

○ Implementations are correct, not just abstract protocols

○ Proofs are machine checked

● First work to produce mechanical proof of liveness of non-

distributed protocol and implementation
○ Proofs are not absolute and assume correctness of some things
○ Work is on proving correctness of your code

2

Iron Fleet

• Toolset modification

• Methodology
– Two-level refinement
– Concurrency control via reduction
– Always-enabled actions (Liveness)
– Invariant quantifier hiding
– Automated proofs of temporal logic

• Libraries

3

Iron Fleet

Builds upon..

• Single-machine system verification (sel4)

• SMT Solvers

• Dafny
https://docs.google.com/document/d/1KaoFQt8rQCfw39WW4p8uUeYbMx2xtNHgadWBb4OFDVA/edit?usp=sharing

4

https://docs.google.com/document/d/1KaoFQt8rQCfw39WW4p8uUeYbMx2xtNHgadWBb4OFDVA/edit?usp=sharing
https://docs.google.com/document/d/1KaoFQt8rQCfw39WW4p8uUeYbMx2xtNHgadWBb4OFDVA/edit?usp=sharing

Implementation

• IronRSL: Replicated state library
– Complex with many features:

• state transfer
• log truncation
• dynamic view-change timeouts
• batching
• reply cache

• IronKV: Sharded key-value store

5

IronRSL

● Safety property: Equivalence to single machine

Paxos

A
B

C

6

IronRSL

● Safety property: Equivalence to single machine
● Liveness property: Clients eventually get replies

Paxos
A

B

C

7

Specification approach: Rule out all bugs by construction

Race conditions
Invariant violations

Integer overflow Deadlock
Livelock

Parsing errors
Marshalling errors

Buffer overflow

8

Refinement

Spec

9

Implementation

Refinement

Spec

Implementation

I0 I1 I2 I3 I4

10

Refinement

Spec

Implementation

S0 S1 S2 S3 S4 S5 S6 S7

I0 I1 I2 I3 I4

11

Refinement

Spec

Implementation

S0 S1 S2 S3 S4 S5 S6 S7

I0 I1 I2 I3 I4

12

Proving correctness is hard

Subtleties of
distributed protocols

Complexities of
implementation

Maintaining global
invariants

Dealing with hosts
acting concurrently

Ensuring progress

Using efficient data
structures

Memory management

Avoiding integer
overflow

13

Refinement

Spec

Implementation

S0 S1 S2 S3 S4 S5 S6 S7

I0 I1 I2 I3 I4

14

Two Level Refinement
Spec

Protocol

Impl

I0 I1 I2 I3 I4

S0 S1 S2 S3 S4 S5 S6 S7

P0 P1 P2 P3 P4

15

One constructs a liveness proof
by finding a chain of conditions

C
0

C
1

C
2

C
3

C
4

C
n...

Assumed starting
condition

Ultimate goal

16

Paxos
A

B

C

Client sends request

Replica suspects leader

Replica receives request

Leader election starts

Simplified example

17

Client sends request

Some links can be proven from
assumptions about the network

Replica suspects leader

Replica receives request

Leader election starts

Network eventually
delivers packets in

bounded time

18

Client sends request

Most links involve reasoning about
host actions

Replica suspects leader

Replica has request

Leader election starts
One action that event
handler can perform is
“become suspicious”

19

Tricky things to prove:
• Action is enabled (can be done) whenever C

i
 holds

• If Action is always enabled it’s eventually performed

Lamport provides a rule for proving links
C

i
C

i+1

Action

Enablement poses difficulty for
automated theorem proving

20

Always-enabled actions

Handle a client request

If you have a request to handle, handle it;
otherwise, do nothing

21

Tricky things to prove:
• Action is enabled (can be done) whenever C

i
 holds

• If Action is always enabled it’s eventually performed
• Action is performed infinitely often

Always-enabled actions allow a simpler
form of Lamport’s rule

C
i

C
i+1

Action

22

Much more in the paper!

• General Purpose verifying libraries

• Invariant quantifier hiding

• Embedding temporal logic in Dafny

• Reasoning about time

• Strategies for writing imperative code

• Tool improvements

23

Line counts

Common Libraries IronRSL IronKV

Safety proof-to-code ratio is 5:1
Liveness proof-to-code ratio is 8:1

24

IronRSL performance

Adding batching (~2-3 person-months)
improved performance significantly

25

IronKV performance

Get Set
Throughput 25%-75% of Redis

26

Conclusions
It’s now possible to build provably correct distributed systems...

...despite implementation complexity necessary
for features and performance

...including both safety and liveness properties

27

