IronFleet:
Proving Practical Distributed Systems Correct

Chris Hawblitzel Jon Howell Manos Kapritsos Jacob R. Lorch Bryan Parno
Michael L. Roberts Srinath Setty Brian Zill

Presenter: Oreoluwa Alebiosu

Iron Fleet

e Build complex, efficient distributed systems whose implementations
are provably safe and live.
o Implementations are correct, not just abstract protocols
o Proofs are machine checked
e First work to produce mechanical proof of liveness of non-

distributed protocol and implementation

o Proofs are not absolute and assume correctness of some things
o Work s on proving correctness of your code

Iron Fleet

 Toolset modification
* Methodology

— Two-level refinement

— Concurrency control via reduction
— Always-enabled actions (Liveness)
— Invariant quantifier hiding

— Automated proofs of temporal logic

e Libraries

Iron Fleet

Builds upon..

» Single-machine system verification (seld)]

* SMT Solvers Zs
* Dafny =

https://docs.google.com/document/d/1KaoFQt8rQCfw39WW4p8uUeYbMx2xtNHgadWBb4OFDVA/edit?usp=sharing

https://docs.google.com/document/d/1KaoFQt8rQCfw39WW4p8uUeYbMx2xtNHgadWBb4OFDVA/edit?usp=sharing
https://docs.google.com/document/d/1KaoFQt8rQCfw39WW4p8uUeYbMx2xtNHgadWBb4OFDVA/edit?usp=sharing

Implementation

* |[ronRSL: Replicated state library

— Complex with many features:

» state transfer

* |log truncation

* dynamic view-change timeouts
e batching

* reply cache

* |ronKV: Sharded key-value store

IronRSL

o Safety property: Equivalence to single machine

IronRSL

o Safety property: Equivalence to single machine
o Liveness property: Clients eventually get replies

Specification approach: Rule out all bugs by construction

Refinement

Implementation

C

S0 0 560 150 1520 1550) 150) e Y e

Implementation

e 300 0O 030

’%S[0OO000

Implementatio

N o D o D o

Proving correctness is hard

Subtleties of Complexities of
distributed protocols implementation

’%S[0OO000

Implementatio

N o D o D o

Two Level Refinement

Sp

OOOOO

F]E>{]Eﬂ]i>[v]ﬂ>[]ﬂ>[]ﬂ>[]

@@@@

2 m

-

-

—

One constructs a liveness proof
by finding a chain of conditions

Simplified example

Some links can be proven from
assumptions about the network

Most links involve reasoning about
host actions

Lamport provides a rule for proving links

Tricky things to pr~
* Action is enapled (can be done) whenever C. holds
* |If Action is always enabled it’s eventually performed

Always-enabled actions

Always-enabled actions allow a simpler
form of Lamport’s rule

e Action is performed infinitely often

Much more in the paper!

e General Purpose verifying libraries
* Invariant quantifier hiding

* Embedding temporal logic in Dafny
* Reasoning about time
 Strategies for writing imperative code

* Tool improvements

Line counts

lIronRSL performance

mlronRSL mBaseline (EPaxos's Multipaxos’

lronKV performance

It’s now possible to build provably correct distributed systems...

...including both safety and liveness properties

...despite implementation complexity necessary
for features and performance

