
IronFleet: Proving Practical
Distributed Systems Correct

Hawblitzel et al.

Scriber: Haozhen Ding

Recap

IronFleet

● Provable correctness of safety and liveness of distributed

system implementation

Methodology

● Two-layer refinement

Methodology
● Floyd-Hoare verification (Dafny, Z3)
● Temporal Logic of Actions (TLA) (for liveness)
Techniques
● Always-enabled actions (for liveness)
● Concurrency containment via reduction
● Invariant quantifier hiding (constructive proof)
● etc.

Implementation/Evaluation
● IronRSL (replicated state-machine library)
● IronKV (sharded key-store)

Recap

Pros
+ Formal guarantees

+ Both safety and liveness

+ Novelty in two-layer refinement

+ Two verified systems have

comparable performance

+ Near-real-time IDE feedback

+ Libraries

+ Lesson learned section

+ Fair assumptions

+ Non-reliable network

Cons
- Much development effort

- Proof code = 8x impl. Code

- 3.7 person-years

- SMT solver complexity, need hints

- Dafny (or something similar)

- Compatibility with C++, Java?

- Hardness of heap management

- Exp. programs are CPU-bound

- Single threaded impl. on each host

- Formal proof of the atomicity

reduction argument is future work

Discussion Questions

● IronFleet requires up to 8x lines of code for proof in additional
to code yet achieves average performance. How do we balance
the tradeoff between performance optimization and formal
guarantee? Is it worth the effort?

Discussion Questions

● IronFleet requires up to 8x lines of code for proof in additional
to code yet achieves average performance. How do we balance
the tradeoff between performance optimization and formal
guarantee? Is it worth the effort?

System requirement
● Consistency vs availability
● Failure recovery
Business concern

Discussion Questions

● What are still in the protocol / implementation models
assumed in IronFleet?

○ File storage?
○ Multi-threaded program?
○ Failure recovery?

Discussion Questions

● What are still missing in the protocol / implementation models
assumed in IronFleet?

○ File storage? (memory)
○ Multi-threaded program? (not clear, additional proof)
○ Failure recovery? (part of distributed protocol)

Discussion Questions

● The paper proves Paxos liveness based on bounded message
delay while in real network Paxos is not live. It might be that
IronFleet verifies the correctness of a system but it is actually
built upon unrealistic assumptions. How much can we trust our
assumptions or the result of IronFleet?

Discussion Questions

● The paper proves Paxos liveness based on bounded message
delay while in real network Paxos is not live. It might be that
IronFleet verifies the correctness of a system but it is actually
built upon unrealistic assumptions. How much can we trust our
assumptions or the result of IronFleet?

At least as much as we can trust them without verification.

Discussion Questions

● The paper proves Paxos liveness based on bounded message
delay while in real network Paxos is not live. It might be that
IronFleet verifies the correctness of a system but it is actually
built upon unrealistic assumptions. How much can we trust our
assumptions or the result of IronFleet?

At least as much as we can trust them without verification.

● Is it bad to assume the correctness of hardware, OS, compilers,
Dafny, etc?

Discussion Questions

● The paper proves Paxos liveness based on bounded message
delay while in real network Paxos is not live. It might be that
IronFleet verifies the correctness of a system but it is actually
built upon unrealistic assumptions. How much can we trust our
assumptions or the result of IronFleet?

At least as much as we can trust them without verification.

● Is it bad to assume the correctness of hardware, OS, compilers,
Dafny, etc?

No. We need layers of abstraction.

Discussion Questions

● The entire IronFleet suit took 3.7 human-years to build. Can we
cut the development time in the future?

Discussion Questions

● The entire IronFleet suit took 3.7 human-years to build. Can we
cut the development time in the future?

Certainly

● More verified common libraries
● Lessons learned about proof techniques
● Incremental change to codebase may not need more

proofs
● Verification-aware development community

Discussion Questions

● Piazza: How comparable is IronFleet to Maude (from UIUC)?

