
1

CHIEN-CHUN HUNG, LEANA GOLUBCHIK, MINLAN YCHIEN-CHUN HUNG, LEANA GOLUBCHIK, MINLAN YUU

Presented by Rohan Seth

SCHEDULING JOBS ACROSSSCHEDULING JOBS ACROSS

GEO-DISTRIBUTED DATACENTERSGEO-DISTRIBUTED DATACENTERS

2

With growing data volumes, it is becoming increasingly inefficient to aggregate all data

required for computation at a single datacenter

WHY DO WE NEED DISTRIBUTED JOB SCHEDULING?WHY DO WE NEED DISTRIBUTED JOB SCHEDULING?

Instead, a recent trend is to distribute computation to take advantage of data locality, thus

reducing the resource (e.g., bandwidth) costs while improving performance.

However, this poses new challenges in job scheduling as it requires coordination among the

datacenters

3

WHAT DOES THE PAPER ACHIEVE?WHAT DOES THE PAPER ACHIEVE?

The authors illustrated why natural SRPT based job scheduling algorithms provide room for

improvement

Proposed the technique of "Reordering" that can be easily added to any scheduling algorithm

to improve it's performance

Developed Workload-Aware Greedy Scheduling (SWAG), which greedily serves the job that

finishes the fastest by taking existing workload at the local queues into consideration

 SWAG and Reordering achieve 50% and 27% improvements, respectively in average job

completion as compared to SRPT based algorithms

4

SYSTEM MODEL USED FOR DISTRIBUTED JOBSYSTEM MODEL USED FOR DISTRIBUTED JOB

EXECUTIONEXECUTION
Our system consists of a central controller and

a set of datacenters D spanning geographical

regions, while the system serves the jobs

running with input data stored across the geo-

distributed datacenters.

The global scheduler residing in the central

controller, makes job-level scheduling decisions

for all jobs in the system , and assigns a job’s

tasks to the datacenters that host the input

data.

The local scheduler at each datacenter has a

queue that stores the tasks assigned by the

global scheduler, and launches the tasks at the

next available computing slot based on the job

order determined by the global scheduler (or

the local scheduler itself)

qd

5

GLOBAL SRPT BASED SCHEDULINGGLOBAL SRPT BASED SCHEDULING

Compute the jobs priority based on the jobs’ total remaining size across all the datacenters

Central controller passes the job order computed by Global-SRPT to all the datacenters

Each datacenter scheduler updates its sub-jobs order in the queue based on the new job

order

Global-SRPT runs at the central controller, as it requires the global state of the current jobs’

remaining tasks across all the datacenters.

6

Job ID Arrival Sequence Remaining Tasks in
DC1

Remaining Tasks in
DC2

Remaining Tasks in
DC3

Total Remaining
tasks

A 1 1 10 1 12

B 2 3 8 0 11

C 3 7 0 6 13

GLOBAL SRPTGLOBAL SRPT

7

INDEPENDENT SRPT BASED SCHEDULINGINDEPENDENT SRPT BASED SCHEDULING

Enable each datacenter scheduler to perform SRPT on its own

The datacenter prioritizes its sub- jobs based on the their sizes and updates the queue order

independently from the information of other datacenters

8

Job ID Arrival Sequence Remaining Tasks in
DC1

Remaining Tasks in
DC2

Remaining Tasks in
DC3

Total Remaining
tasks

A 1 1 10 1 12

B 2 3 8 0 11

C 3 7 0 6 13

INDEPENDENT SRPTINDEPENDENT SRPT

9

Both Global-SRPT and Independent-SRPT improve the average job completion time by

favoring small jobs.

However, since each job may have multiple sub-jobs across all the datacenters, the imbalance

of the sizes among the sub-jobs causes the problems for SRPT-based scheduling.

SHORTCOMINGS OF SRPT BASED EXTENSIONSSHORTCOMINGS OF SRPT BASED EXTENSIONS

10

GLOBAL - SRPTGLOBAL - SRPT

We see that job A’s sub-jobs in datacenter 1

and 3 finish even before its sub-job at

datacenter 2 starts. Since the job’s

completion time is determined by the last

completed sub-job across all datacenters,

we can actually defer and bit

without hurting job A’s finish instant, while

it can yield the compute resources to the

tasks of other sub-jobs.

vA,1 vA,3

11

INDEPENDENT SRPTINDEPENDENT SRPT

The same observation is also valid for

Independent-SRPT in the example, in which

 can yield to and in

datacenter 1, and can yield to in

datacenter 3, without delaying job A’s finish

time

VA,1 VB,1 VC,1

VA,3 VC,3

REORDERINGREORDERING

Reordering, is used as an auxiliary mechanism to reduce

the “imbalance” of a job’s sub-jobs.

The basic idea behind Reordering is to continue moving

sub-jobs later in a local queue, as long as delaying them

does not increase the overall completion time of the job

to which they belong.

SRPT-based heuristics do not result in better

performance is that they fail to consider the competition

for resources faced by each of its component sub-jobs

12

1

REORDERINGREORDERING

Reordering improves both Global-SRPT and

Independent-SRPT by delaying and until the

end of their associated queues.

The delay of and does not degrade Job A’s

finish instant as it is determined by .

This procedure continues by selecting Job C, and

finally Job B, which results in N = A → C → B. Thus,

Reordering returns B → C → A.

VA,1 VA,3

VA,1 VA,3

VA,2

13

SWAG DESIGN PRINCIPLESSWAG DESIGN PRINCIPLES

Jobs that can finish quickly should be scheduled before the other jobs.

Should consider scheduling jobs more as a function of sub-job sizes rather than the size of

the overall job.

Should also consider the local queue sizes in assessing the finish times of sub-jobs.

14

SWAG ALGORITHMSWAG ALGORITHM

The central controller runs SWAG whenever a new job arrives or departs. The new order of all

jobs is computed from scratch based on the estimated job finish times

SWAG greedily prioritizes jobs by computing their estimated finish times based on the current

queue length as well as the job’s remaining size

15

SWAG ALGORITHMSWAG ALGORITHM

SWAG first selects Job C as it has the smallest

makespan of 7, as compared to 10 for Job A and 8

for Job B.

The queue length for datacenter 1 and datacenter

3 would be updated to 7 and 6, respectively,

according to Job C’s sub-job size

Jobs A and B result in the same makespan of 10,

with respect to the new queue lengths. Since Job

B has a smaller remaining size than Job A, it is

added after Job C, followed by Job A

Final job order as computed by SWAG is C → B →

A,

16

PERFORMANCE EVALUATIONPERFORMANCE EVALUATION

The main performance metric the paper focused on was average job completion time, which

is defined as the average elapsed duration from the job’s arrival time to the time instant at

which the job has all its tasks completed and can depart from the system

Compared the performance of: FCFS, Global-SRPT, Independent-SRPT, Global-SRPT followed

by Reordering, Independent-SRPT followed by Reordering, and SWAG

 Workloads used in the experiments were Facebook’s production Hadoop cluster and Google

cluster work- load trace, as well as the Exponential Distributions

17

18

PERFORMANCE EVALUATIONPERFORMANCE EVALUATION

PERFORMANCE EVALUATION - REORDERINGPERFORMANCE EVALUATION - REORDERING

Reordering results in reduction of average completion time for SRPT-based heuristics by 27%

under highly utilized settings and is upto 17% under lower utilization.

With Reordering, Independent-SRPT performs better than Global-SRPT in all the scenarios

19

PERFORMANCE EVALUATION - SWAGPERFORMANCE EVALUATION - SWAG

Compared to SRPT-based heuristics, SWAG’s performance improvements under higher

utilization are up to 50%, 29% and 35% in the Facebook, Google and Exponential trace

respectively

The differences in performance improvements attribute to the fact that job traces with higher

variance in job sizes tend to have more large jobs, which potentially results in more severe

skews among the sub-jobs

High-variance job trace like Facebook trace displays more opportunities that allow SWAG to

achieve higher improvement by selecting jobs that can finish quickly according to its design

principles

20

PERFORMANCE EVALUATION - FAIRNESSPERFORMANCE EVALUATION - FAIRNESS

Classified the jobs based on their sizes: small jobs (1-150 tasks), medium jobs (151-500 tasks)

and large jobs (501 or more tasks)

All scheduling approaches have the same trends, i.e., that small jobs have the smallest

slowdown while large jobs have the largest slowdown

21

22

PERFORMANCE EVALUATION - FAIRNESSPERFORMANCE EVALUATION - FAIRNESS

23

OVERHEAD EVALUATIONOVERHEAD EVALUATION

Evaluated the system overhead on 2 aspects:

1. Computational Overhead

2. Communication Overhead

24

COMPUTATIONAL OVERHEADCOMPUTATIONAL OVERHEAD

Obtained this by monitoring the execution time due

to running of the scheduling algorithms during each

scheduling decision point

Scheduled running time of SWAG (4.5ms) is relatively

small compared to the average task duration time

(2s)

Actual difference in computational overhead

between SWAG and SRPT-based heuristics with

Reordering is not significant

25

COMMUNICATION OVERHEADCOMMUNICATION OVERHEAD

Communication overhead essentially depends on

the number of current jobs in the system

SWAG succeeds in keeping the number of current

jobs small, it achieves the smallest communication

overhead.

26

PERFORMANCE SENSITIVITY ANALYSISPERFORMANCE SENSITIVITY ANALYSIS

Measured performance sensitivity on 2 scales:

Impact of Task Assignment

Number of Datacenters

27

THE ENDTHE END

