
C3: Cutting Tail Latency in Cloud Data Stores via
Adaptive Replica Selection

Lalith Suresh, et al, NSDI 2015

Scribe by

- Piyush Shrivastava

Summary

• Motivation: To minimize tail latency in a distributed data store.

• Authors introduce C3 - a system for cutting tail latency in cloud data
stores by adaptive replica selection

• Implemented on top of Cassandra.

• Two concepts introduced:
• Replica Ranking algorithm

• Distributed Rate Control mechanism

Pros

Pros

Automatically
tuned at
runtime.

No trade-off
between

latency and
throughput

Intuitive ranking
algorithm. Fast
servers having

longer queues are
ranked low to

avoid Herd
Behavior.

Conversation
with engineers

from
SoundCloud and

Spotify.

Back Pressure
Mechanism

Experimental results
show C3 winning all

scenarios against the
default Dynamic

Snitching.

Cons

Cons

Not evaluated
on a

production
scenario or
workload

Not convincing
that the same
approach will
work for other

NoSQL
databases.

No evaluation
done on a

write heavy
workload.

Consistency
is made the
scapegoat,
consistency

factor always
set to 1

Discussion/Questions

• The system model has consistency level set to 1 for all scenarios. Is
that a fair assumption to make?

• Can C3 be easily extended to other NoSQL systems?

• Experimental evaluation does not include a write/update heavy
workload. Why?

Discussion/Questions (Most probable answers)

• The system model has consistency level set to 1 for all scenarios. Is
that a fair assumption to make?
** Okay for read heavy workload. But for a other work loads, such an assumption can surely invite the
problem of stale reads.

• Can C3 be easily extended to other NoSQL systems?
** Authors have mentioned this in the future work section. But since there are major design differences
between Cassandra and MongoDB, the ‘porting task’ (as mentioned by the authors) would not be easy.

• Experimental evaluation does not include a write/update heavy
workload. Why?
** Difficult to answer this. Most likely explanation - Since the authors were in conversation with
engineers from SoundCloud and Spotify (which have a read heavy workload), they ignored the write
heavy workload in the evaluation.

Thank You!

