Automating distributed partial
aggregation Q

Presenter: Guangzhe Gao

o

\/chkGround: MapReduce

o

Map(Key, Value)

Shuffle

A 4

Key1:V11

A 4

Key2:V21

\ 4

Key1:V12

\ 4

Key2:V22

Keyl

VAR

Process

V12

Key2

V21

\ 4

Key 1:Result1

V22

v

Key2:Result2

’, -
»-\/Bo’r’rleneck

N’

Network I/O from data nodes to the aggregate nodes.

Means high delay when shuffling data to one machine

Can’t avoid if there is aggregation measure: e.g. SUM, COUNT, AVERAGE ...

How about aggregate what we have and only pass the partial aggregate result to the network?

_/Mo’rivo’rion

* Solution: aggregate intermediate results, then transmit partial result.

High level layout
Initial
Partial

Reduce Combine More Combines..... Final reduce and output

........................... Cluster

Computer4

—]

v

Node Reducer ~ _ /4
N’

) A
__“Partial Aggregation

N’

Why: saves I/O time than aggregate everything finally in one shot.

Old Approach to change to partial aggregation:

Reduce function becomes:

Reduce

Combine

* Old Approach Problem: 1. Error Prone 2. Miss optimization opportunity.

* Need a way to judge partial aggregation feasibility.

- \ 4
_/I'ool f;r aggregation optimization

N’

Automatic verifiction of partial aggregation applicability

Change normal reducer code to more efficient scheme (initial reduce, combine, final-reduce)
Decomposible: distributed programs eligible for partial aggregation.

Decomposible Properties:

1. Reduce functions loops through records in a group using accumulator.

2. Initial/final-reduce function is the rearrangement of original reduce function code. Only combine
function need to be made.

3. Reduce function decomposability depends on argebraic properties of combine function and accumulator.

Claim: the necessary and sufficient condition of reduce function’s decomposability: is determined by
accumulator’s commutativity; also, combine function is the inverse function of accumulator.

Prove and verify (using program) the above claim is the work of the paper.
",

St
N/ A\

-4 N/
__“Combiner Difficulty

N’
-
* Combining tree may be different, but the result must be same.
* For the graph example below, C(C(x3,x2),C(x1,x4)) or C(C(x1,x4), C(x2,x3)) should yield same result.
X2 Xl X4 public IEnumerable<Row>
Reduce (RowSet input, Row outputRow) { Solution Variable

int sum = 0;
bool isFirst = true;
foreach (Row row in input.Rows) {
if (isFirst) {
row[0] .CopyTo (outputRow[0]) ;
isFirst = false;
sum = 10 + row[1].Integer;
} else sum += row[1].Integer;

1.
2.
3.
4.

Accumulator

N\
N

}
C 9. outputRow[1].Set(sum);
10. yield return outputRow;

The above right picture is an sample reducer. (emits key and summation plus 10)

A T I)

Commutativity of accumulator is verified by making sure for two row sets x, y, C(x,y) = C(y,x) _/

| &
_/Combiner based on new Initial Reducer

N’
public Row InitialReduce(RowSet input, public Row Combine (Row x, Row Y) {
Row outputRow) { .
int sum = 0; if (x[2] .Boolean) {
bool isFirst = trl.le;. X[O] = y[o] ; // for outputRow [o]
f°§a§1§s§§§:§°¥ i dnput-Rows) x[1] = y[11; // for sum
row[0] . CopyTo (outputRow [0]) ; x[2] = false; // for isFirst
isFirst = false; } else x[1] += y[1].Integer - 10;

sum = 10 + row[1].Integer;
} else sum += row[1].Integer;
3 }
outputRow[1].Set(sum) ;
outputRow[2] .Set (isFirst)j

return outputRow; public Row FinalReduce(Row x, Row output)
output [0] = x[0];
output[1] = x[1];
return output;

return Xx;

}

- —

__“Reducer Decomposibility?

N’

* Even if we have comutativity, how does this mean decomposability of reduce function (which means

partial aggregatable)?

* Also, above optimization is easy for human, but not for computer. Complex optimization will be infeasible

for human.
* Things need to proof:
. exists <-> accumulator and reduce function commutative.
* General inverse function of accumulator -> constuction of

* Both will be proved later on.

- ~—
__“ Accumulator decomposibility Definition Preliminaries

N’

F(s,€) = s and F(s,(x) ®X) = F(F(s,x),X).

e Just means accumulator F can do element-wise accumulation.

* |If Solution space is defined as § _ {S|S _ F(S(),X),X c [*} | is input domain
* We have for all input sequences X,Y S I*, then F(F(S,X),Y) — F(S,X @Y)'

* Result of reduce function R = Results of P(InitialReduce, Combine, and FinalReduce) -> R is decomposable.

- N/
»JAccumulator decomposibility Definition

S’

Definition 1 (Decomposability). An accumulator F in re-
duce function R with the initial solution sq is decomposable,
if and only if there exists a function C such that the following
four requirements are satisfied:

1. For any two input sequences X1,X, € I*,
F(SO7X1 @XZ) :C(F(SO;Xl)aF(SO)XZ))' (1)

2. F is commutative: for any two input sequences X1,Xp €
I*, F(s0,X1 ®X2) = F(s0,X2 ® X1);

3. C is commutative: for any two solutions si,s2 € S, i.e.,
C(s1,52) = C(s2,81);

4. C is associative: for any three solutions s1,s2,53 € S, i.e.,
C(C(s1,52),83) = C(s1,C(s2,53)).

We say that C is the decomposed combiner of F.

* (1) means accumulator can wave the hand and throw work to combiner. Other parts just follow previous
definitions and proof. Note that requirement 2. implies all other requirements (necessary and sufficient). \./

Will be shown later.
~ o/ |
.
N7 o\ /

__“Reducer Decomposibility <-> Accumulator commutativity

N’

Theorem 1 (Informally). Reducer R is decomposable if and
only if the corresponding accumulator F is commutative.
The decomposed combiner C is uniquely determined by F.

The author only gives proof outline in this paper.

Lemma 1. Given a combiner C that satisfies Equation I, C
is commutative and associative if and only if accumulator F
is commutative.

F(S07X1@X2) :C(F(807X1)3F(s07X2))' (1)

First proof is to show:

Recall Definition 1. condition 2: F is commutative: for any two input sequences X1,Xp €
I*, F(s0,X1 ®X2) = F(s0,X2 ®X1);
consider input as single element ratherthan sequence, we have C commutative. Similar reasoning for

associative. /

A T I)

S’

—r

»JReducer Decomposibility continued

Lemma 2. F is commutative if and only if for any solutions
s € S, and any two input values x,y € I, F(s,xy) = F(s,yx).

Lamma 2 is more like definition so not proof given.

F is commutative: for any two input sequences X1,X, € implies exist combiner C satisfies

o1 F(s0,X1 ©X2) = C(F (s0,X1),F (s0,X2)).

Proof: given s1 :F(so,XS, s2 = F(s0,Y) C(s1,s2) can be defined as FT(So,X\éY)/¥ F(s1,Y)

How to do mapping?

(1)

-\/Generql Inverse Function

N’

* Inverse function % — {HWS_E S'F(SO_7H(S)) =_S}

* H need not to be one-on-one according to the construction.

* We define derived combiner CH(Sl,Sz) — F(Sl,H(Sz)) for each H. $

* Now need to show if F commutative, derived containers produce same result.

* The intuition in paper: If same aggregate output for two input sequences with initial solution value,

* The two input sequences can always generate same out put for arbitrary solution value.

- N/

</ .

-

Lemma 3. Given an accumulator F that is commutative
and two input sequences X,Y € I*, if there is a 5o such that Lemmad. If an accumulator F is commutative, then for any

F(s0,X) = F(s0,Y), then F(s,X) = F(s,Y) holds true for H,H' € 5%, Cy =Cy.
any s € S.

F(s,X)=F(F(s0,Z2),X) =F(s0,Z®X)
= F(s50,X®Z)=F(F(s50,X)DZ)=F(F(s09,Y)DZ)
= F(so,YDZ)=F(s0,ZDY)=F(F(s09,2),Y)=F(s,Y)
* Finally: the proof is done: for any commutative accumulator F, the combiner C can be generated using any

general inverse function H of F.

* Formal restatement of everything: Theorem 2. Reducer R is decomposable if and only if the
corresponding accumulator F is commutative. The decom-

posed combiner C is uniquely determined by F, and takes the /

form C(s1,s2) = F(s1,H(s2)) where H is any inverse func-
tion of F.

- N T\ /

\/Decomposq bility Verification

S’

From above lemmas and theorems, only need to show F(s, xy) = F(s, yx) for all s, x, y.

But F is a program?

Parse the language code.

F = flx,...,x].F,...,F;s;returne,...,e

e 1= x|eopgel|n

s = x:=el|x,..,x:=f(e,..e)|ss
| if (p) then s else s | skip

p = eop,e|true]false

* f: function name, F....F: nested function definition,

* e: expression (variable x, constant n, binary operator)

F,=F(s,xy) fils,x,y].F.s1 := f(s,x);5, := f(s1,y); return s,
Fr=F(s,yx) fr[s,x,y].F.s1:= f(s,y);82 := f(s1,%);return s,

|
\/Pq’rh Formula

Output

. Predicate Expression
variables

\
VAR o=

el jeJ

\ /

Index Set
(of input
and output)

Path Formula is true if {X1 ... Xn, O1 ... Om} evaluate to true. Meaning F(X1 ...

~ S

=01..0m

N

\/Convért program to formulae

Symbolic execution.

Look a lot like compiler parsers. If interested refer to extra slides.

Now decompasability verification becomes SMT satisfiability problem:

Theorem 3. Vsxy.F (s,xy) = F (s, yx) if and only if ¢z~

¢§" SN (Vi1 0i # o) is not satisfiable.
* i.e. not output dlfferent case.

Fyec = acclrowg, sum,isFirst,xp,x1 . S i
el 1205 eparate by cases (isFirst) and output
if (isFirst = 1) then { P M () P

rowg :=xop; / / \ / \ ’ \
isFirst :=0;

01,02,03 _
sum := 10 +xq; _ (P (stzrst—1/\01—x0/\02—10+x1/\03 o/

{JLL

} else { \/ (isFirst # 1 Aoy = rowg Aoy = sum—+x; Aoz = tstrst)

sum = sum-+Xxi;
b
return row, sum, isFirst
S u

"/ b 7

) oS
\/Dilemmq again

o

* Given decomposable accumulator F, combiner Cthat satisfies Cp (Sl,s2) — F(Sl ,H(SZ)) is difficult

to construct.
* His general inverse function of F.

* Greedy approach:
* most accumulators of decomposable reducer are in thre categories:

1. Counting aggregation over an input sequence that is only
determined by the length of the sequence;

2. State machine aggregation that essentially simulates a
state machine with a limited number of states; and

3. Single input aggregation over an input sequence that can
be simulated by aggregating over one input record.

] \o.””
\/Coun’rfng category

N’

Definition 2 (Counting category). An accumulator F be-
longs to the counting category if and only if, F(so,X) =
F(s0,Y) holds for any two input sequences X,Y € I*, |X| =
Y.

* Inother words only size matters

Lemma 5. An commutative accumulator F belongs to the

counting category if and only if, for any two input records
x,y €1, F(so,x) = F(so,y) holds true.

input(sl, s2);
s = s0; r = si;

while (s<>s2) {
r accumulates |s2]| - |sO| zeros, so
s = F(s, 0);

r = F(r, 0); set H be of this number zeros

}

return r; — \\-// /

\/S’rq’re Machine category

N’
o
* Finite state machine defined by accumulator?
* BFS with depth(states #) threshold T.
* Explore all possible states and store transition table in Sol, so H can computed based on lookup
* C(S1, S2) has TA2 combinations
Fy = sm|s, x].
if (s = —1) then Sol:
if (x > 100) then s := 0; else s:=2; (o 3 1010, (2,_1,100). and (1,0,100). ComPiner
else if (s = 0) then
if (x > 100) then s := 0; else s := 1; " input(st, s2)
else if (S = 2) then if (s1 == -1 and s2 == -1) then return -1;
if (x > 100) then s := 1; else s := 2; éiée if (s1 == 2 and s2 == 0) then return 1;/
return s

A R @)

| &Z
\/Single Input aggregation

o

Lemma 6. An accumulator F belongs to single input cate-
gory if and only if, for any two input records x,y € I, there
exists an input record z such that F (so,xy) = F(s0,2).

* Novel idea: Eliminate the need of z.

* Can eliminate if satisfies the partial function that requires z.

VXO,X],}’O,}’].
3z0,21.20 =x0AN10+21 =104+x1 +y1 A0=0

* Can be rewritten as : Vx0,%1,Y0,Y1-
dz0,21.20 =x0Nz1 = 104+x1 +y; —10A0=0

* Two Z’s in the left, so requiment is Vxo,X1,50,91.0 =0
Y) Y ¢

~ N

-Jqulunion

N’

* |tis a prototype

* Total jobs 4,429
* Baseline of auto partial aggregation: 183 Jobs use partial aggregation, 28 of them (15.3%) may be incorrect.

* Remaining 4246 jobs, 261 are true positives. (manually checked)

* Performance gain(in reduction):
* Time (61.6%) 165 sec -> 64 sec
* Space: (99.98%) 7.99GB -> 1.22MB

* 62.4% latency, 76% in network 10

\/Time cost and failure (not very useful)

N

| # | Vsxy Vxy | # | Vsxy Vxy | # | Vsxy Vxy | # | Vsxy Vxy |
008 004 | 7 (031 02913017 0.07 | 19| 017 0.17
0.11 004 | 8 | 254 031 |14 | 0.04 0.04 | 20 | 0.16%* 0.05
0.18 006 | 9 | 006 003 |15 | 0.05 002 |21 |0.70% 0.07
020 0.10 | 10 | 0.05 0.02 | 16 | 0.05 0.02 | 22 | 0.22* 0.04
0.09 004 |11 | 002 0.02 |17 | 017 0.17
0.10 0.08 | 12 | 0.08 0.04 | 18 | 0.17 0.17

AN A W=

Table 1. Performance of our prototype’s decomposability verification. The Vsxy and Vxy columns show running time to verify
the decomposability using Vsxy.F (s,yx) = F (s,xy) and Vxy.F (so,xy) = F(so,yx) respectively. All times are reported in seconds
with stars meaning that verification failed.

| # [Type Time ‘ # | Type Time | # | Type Time | # | Type Time |
1|C 0.03 7 | SI 1.10 13 | C+SI 0.15 19 | SI 0.09
2| C 0.04 8 | SM 0.77 14 | SI 0.14 | 20 | SI 0.07
3|C 0.06 9 | C 0.02 15 | C 0.02 |21 0.14*
4 | C+SI 0.31 10 | C 0.02 16 | C 0.02 | 22 0.08*
5| SI 0.08 11 | SI 0.05 17 | SI 0.09
6 | C+SI 0.09 12 | C 0.03 18 | SI 0.09

Table 2. Performance of our prototype’s combiner synthesis. The type column shows which kinds of techniques are used to
synthesize the combiner; the time column shows the running time in seconds, including both the times to check technique
validity and to generate combiner code; and the stars after Reducer 21 and Reducer 22 mean that combiner synthesis failed.

-/
).

Thank you!

| &
_/Ex’rrq slides

"’
* Symbolic Execution: o=
Y+ (t,5) > A
x € Vars
S-Varm YH(M,s)) =M YH(H s~ M
S-Seq Y+ (M, s155) — A"
S-Cnst
ol =n sag 2 =1(9,0)|(¢,0) € A N0 =0[x+ o(e)]}
-ASS
oe)=¢,i=1,2 Y (M x=e)— M
e=¢jop,é)
S-Aop S-Skip

o(e1opaer)=e Y+ (A, skip) — A

- YH (AM,s)) — Mii=1,2
M'={(9No(p),0)|(9,0) € A1}

s mufls v = true or v = false] U{(¢Aa(-p),0)l(9,0) € 4}
T o(v)=v Y+ (A,if(p)then s; else sp) — A’
ole)=é},i=1,2 Y(f) = flx}s s X F1y ..., Frs;return €], ..., e,
R 9 =¢€ op.e, M* = {(true, {x; = x| j=1,...m})}
-Rop

Y* = {name(F;) — Fj|j=1,..,1} YT"F(A*s) > M
M ={(91 N 92,0)|(91,01) € AN (§2,02) € M™
Ao’ = o1[x; — o1(02(€)))}

c(eiopre) =9

S-F
e Y (M, x1,y.ccxn = f(€1,..rm)) = A’

Figure 6. Symbolic Execution for Path Formula

TN /

If interésted, refer to

_ See the section after citations: Proofs for Decomposability

Theory

(M,e) | v

M(x)=v
VM) by

Cnst —(M, n) Un

(M,e;) Jvi,i=1,2
V="V]0pg V2
(M,e1 0pg e2) 4 v

v = true or v = false
(M,v) v

(M,e;) Jvi,i=1,2
v=o0p,(v1,v2)
(M,e1 oprex) v

Aop

TrFls

Rop

YH(M,s)—M

YH(M,s1) >M YH(M, s)—M
Y (M,s1;50) > M

Seq

(M,e)Jv M =Mx—v|

A Ski
T Y F Mxi=e) o M PTY (M, skip) —» M
YH(M,s;) >M;,i=1,2 (M,p) v
V=>M’=M1 —-v=>M'=M2

Y+ (M,if(p)then s; else s;) — M’

Y(f) = f¥}, s Xp) - F1, .., Fp.5retUrn e}, ..., e,
M,e;) yvii=1,...m M*= {xjj =vilj=1,..,m}
Y* = {name(F;) — Fj|j=1,...,1}

Y* - (M*,s) — M* (M™,e,) Vv, ,k=1,...,n
M =Mx; =V,xn V)]

Func

Y (M, x1,....xn := f(e1,...em)) > M’

Figure S. Operational Semantics

