Apache Hadoop YARN:
Yet Another Resource
Negotiators

Vinod Kumar Vavilapalli et al.
Hortonworks, Yahoo, Microsoft, Inmobi and Facebook

SoCC’13 Best Paper
Presenter: Hongweil Wang

Some slides are borrowed from Hortonworks and Apache Hadoop

Agenaa

Why YARN?
YARN Architecture
Experiments

Conclusion

Hadoop 1.0: Batch

HADOOP 1.0
Built for Web-Scale Batch Apps

Tight coupling of MapReduce
| F | F model with the resource
NTERACTIVE ONLINE management infrastructure
All other usage patterns must
leverage the same architecture

Hadoop MapReduce
Classic

- JobTracker

- Manage cluster resources

- Jobjtask scheduling ~ en) .
- TaskTracker @)

- Per-node agent

MapReduce Status b

- Manage taSkS Job Submission ===~~~ >

MapReduce Classic:
Limitations

Scalability

- Maximum cluster size: 4,000 nodes

- Maximum concurrent tasks: 40,000

Overloaded JobTracker, single point of failure

Hard partition of resources into map and reduce slots
- Low resource utilization

Lack support for alternative paradigms and services

- lterative applications implemented using MapReduce are 10x slower

Hadoop 2: Next-Gen Platform

Single Use System Multi Purpose Platform
Batch Apps Batch, Interactive, Online, Streaming, ...
HADOOP 1.0 HADOOP 2.0

MapReduce Others
(data processing) r1: (data processing) .
MapReduce k - o LA

(cluster resgurce management YARN
& data processing) (cluster resource management)

Hadoop YARN

Store ALL DATA in one place...

Interact with that data in MULTIPLE WAYS

with Predictable Performance and Quality of Service

ly |
8 BATCH ONLINE || STREAMING GRAPH [|IN-MEMORY || HPC MPI (g::'::)
—3 |(MapReduce) (HBase) Storm, S4,..)}| (Giraph) (Spark) (OpenMPI)
[L__ [(Weave...)
Q)

T YARN (Cluster Resource Management)
=

HDFS2 (Redundant, Reliable Storage)

Key Improvements in YARN

Framework support multiple applications

- Decouple generic resource management from programming
framework

- Share same Hadoop cluster across applications

Improve cluster utilization

- (Generic resource container replaces based fixed map/reduce
slots (2 CPU, 2 GB Memory)

Scalability

- Remove complex application logic from RM to scale further

YARN Concepts

* JobTracker is decoupled into
- Resource Manager (RM): global resource scheduler

- Application Master (AM): manage per-application
scheduling and task execution

 TaskTracker is changed into

- Node Manager (NM): per-node agent, manage the
ife-cycle of container and monitor container
resources

YARN Architecture and

Workflow

1) Client -> Resource Manager

MapReduce Status

Submit App Master

2) Resource Manager -> Node Manager
Start App Master

3) Application Master -> Resource Manager

Request containers
4) Resource Manager -> Application Master
response allocated containers
5) Application Master -> Node Manager

Job Submission ~==-~-- »

Node Status >

Resource Request »
O

Assign resources to tasks(assignment)

Start tasks in containers(start Container->
stop container)

6) Node Manager -> Resource Manager

report running and terminated container,
trigger new round of scheduling.

Fault Tolerance

* RM Failure
- Single point of failure

- Recovery from persistent state, kill and restart all AMs

« AM Failure

- AM sends periodic heartbeat to RM

- RM will restart AM and re-run tasks

e NM Failure

- NM sends periodic heartbeat to RM

MapReduce Status 9

Job Submission =====-=- >
. . Node Status >
- RM marks containers as failure and report to AMS | resource fequest -

- AM is responsible for reacting to node failures, re-run tasks.

EXperiments

160 000
140 000 4
120000..........§
100 000 - ------- e :
80 000 4- e b .-
60 000 -
40 000 -
20 000 +-

0.4

s Number of daily jobs

........................

Hadoop 1.0 YARN (avg) YARN (sustained) YARN (peak)

(a) Daily jobs

{ | commmmm Number of daily tasks (in millions)

Hadoop 1.0 YARN (avg) YARN (sustained) YARN (peak)
(b) Daily tasks

Figure 2: YARN vs Hadoop 1.0 running on a 2500 nodes pro-
duction grid at Yahoo!.

Conclusion

« YARN decouples resource management and programming framework to
provide

- Greater scalability

- Higher utilization

- Enable a large number of different frameworks to efficiently share a cluster
e Cons:

- RM single point of failure, waste resources and time by restarting all AMs.

- NM/AM: simple re-run failed/killed tasks leads to wastes

- Log aggregation increases the pressure of HDFS NameNode, making it as a
bottleneck

