
Apache Hadoop YARN:
Yet Another Resource

Negotiators
Vinod Kumar Vavilapalli et al.

Hortonworks, Yahoo, Microsoft, Inmobi and Facebook

SoCC’13 Best Paper
Presenter: Hongwei Wang

Some slides are borrowed from Hortonworks and Apache Hadoop

Agenda

• Why YARN?

• YARN Architecture

• Experiments

• Conclusion

Hadoop 1.0: Batch

Tight coupling of MapReduce
model with the resource

management infrastructure

All other usage patterns must
leverage the same architecture

Hadoop MapReduce
Classic

• JobTracker

- Manage cluster resources

- Job/task scheduling

- TaskTracker

- Per-node agent

- Manage tasks

MapReduce Classic:
Limitations

• Scalability

- Maximum cluster size: 4,000 nodes

- Maximum concurrent tasks: 40,000

• Overloaded JobTracker, single point of failure

• Hard partition of resources into map and reduce slots

- Low resource utilization

• Lack support for alternative paradigms and services

- Iterative applications implemented using MapReduce are 10x slower

Hadoop 2: Next-Gen Platform

Hadoop YARN

Key Improvements in YARN
• Framework support multiple applications

- Decouple generic resource management from programming
framework

- Share same Hadoop cluster across applications

• Improve cluster utilization

- Generic resource container replaces based fixed map/reduce
slots (2 CPU, 2 GB Memory)

• Scalability

- Remove complex application logic from RM to scale further

YARN Concepts
• JobTracker is decoupled into

- Resource Manager (RM): global resource scheduler

- Application Master (AM): manage per-application
scheduling and task execution

• TaskTracker is changed into

- Node Manager (NM): per-node agent, manage the
life-cycle of container and monitor container
resources

YARN Architecture and
Workflow

Fault Tolerance
• RM Failure

- Single point of failure

- Recovery from persistent state, kill and restart all AMs

• AM Failure

- AM sends periodic heartbeat to RM

- RM will restart AM and re-run tasks

• NM Failure

- NM sends periodic heartbeat to RM

- RM marks containers as failure and report to AMs

- AM is responsible for reacting to node failures, re-run tasks.

Experiments

Conclusion
• YARN decouples resource management and programming framework to

provide

- Greater scalability

- Higher utilization

- Enable a large number of different frameworks to efficiently share a cluster

• Cons:

- RM single point of failure, waste resources and time by restarting all AMs.

- NM/AM: simple re-run failed/killed tasks leads to wastes

- Log aggregation increases the pressure of HDFS NameNode, making it as a
bottleneck

