Salt: Combining ACID and BASE
in a Distributed Database

Authors (University of Texas Austin): Chao Xie, Chunzhi Su, Manos
Kapritsos, Yang Wang, Navid Yaghmazadeh, Lorenzo Alvisi, Prince Mahajan

Presented By:
Sharanya Bathey

The tale of ACID...

 Transaction - Basic unit of
work in an RDBMS

* ACID

— Atomicity: all or nothing

— Consistency: always leave a
database in a consistent
state

— Isolation: every transaction
is completely isolated

— Durability: once committed
always recorded

Image Source

The tale of ACID...(Oh No!)

Image Source

What needs to be done to
achieve this abstraction?
— 2 Phase Commit

— Locks

What baggage do such
abstractions come with?

— Performance is sacrificed

Rise of BASE...

* BASE

— Basically Available - does

guarantee availability, in
terms of CAP theorem

— Soft State - State of the
system may change over
time

— Eventually Consistent -

. data will be consistent at

THE DARK KNIGHT RISES replicas eventually

Image Source

Rise of BASE... (What now?)

* Problem?

— Complexity of
programming

— Consistency
Management

Image Source

Is there no middle ground?

* Pareto Principle - 80-20 Rule

* Example:

— Fusion Ticket (open source ticketing application)

— Total of 11 different types of Transactions of
which just 2 are performance critical

Introducing... BASE transactions

Manually Identify the key
transactions that cause the
performance bottleneck

A

Base-ify these transactions by
breaking the transaction into
alkaline sub transactions which
are still contained within the
same BASE transaction

7~

([H

Txn 2‘

~——

L

BASE

transaction

\.

e)
alkaline txn N

/

R N
alkaline txn

Acid Transaction

e N
Transfer

\.

Is c=$10?
c=c-$10
s=s+$10

_

transaction

|
|(BAE

Partl
Is c=$10?

c=c-$10

(ll
_

Part2
s=s+$10

f'
_

Time

Transfer
Is c2$10?
c=c-$10
s=s+$10

Transfer
Is c=$10?
c=c-$10

Example of Base-iying an ACID

Transfer

Partl
Is c2$10?

=0
-/

Part2

s=s+$10

088

—

Transfer

Partl
| = (14

=D
N/

Part2

e/

Acid Transaction

r

\

N
Balance

Reads

Read s

y,

But the problem being?

4@.

Transfer |

r

_

N\

y,

(e

Base-fied Transactions

Wit

Transfer 2
-

3
Is c=$10?

c=c-$10

\L

[

J

J

s=s+$10

Solution being? Restrict Interaction

ACID BASE Alkaline
ACID No No No
BASE No Yes* Yes*
Alkaline No Yes* Yes**

* _intermediate committed state of alkaline sub transactions
** - only read alkaline sub transactions

Base Transactions (Contd...)

* Major life events of BASE transactions: Accept &
Commit

* How does a BASE transaction provide ACID
abstraction?
— Atomicity - once accepted will eventually commit

— Consistency - Interactions keep ACID and BASE
transactions isolated

— Isolation - SALT Isolation coming up next..

— Durability - Accepted BASE transactions are
guaranteed to be durable through logging

Introducing the MVP — Salt Isolation

e Uses Locks - Isolation level
chosen is Read Committed

 Locks:

ACID Locks - write with
any other operation
conflicts

Alkaline Locks - alkaline
sub transactions isolated
from ACID and other
alkaline sub transactions

Saline Locks - ACID
isolated from BASE, but
increased concurrency by
exposing intermediate
state to of BASE
transactions to other BASE
transactions

alkaline lock

saline lock

ACID
Rx

Execute

(=N

Vi

|

il d

-----=ewewm ---

- - P

Execute

So does it actually work?

* Implementation:
— Modified MySQL to allow BASE transactions and Alkaline Sub-
transactions

— Allow alkaline and saline locks

* QOptimizations:
— Early commit - A client that issues a BASE transaction sees the
transaction completion when when its first Alkaline sub transaction

commits
— Failure recovery - Logging with redo and roll forward

— Transitive dependencies - Per object queue

— Local Transactions

* Replication of data was done across 10 partitions and each partition was
three-way replicated

e Evaluated: Performance Gain, Programming Effort, Contention Ratio

Case Study

1 begin BASE transaction
2 Check whether all items exist. Exit otherwise.
3 Select w_rax into @w_rax from warehouse where w_id = : w_id;
4 begin alkaline—subtransaction
5 Select d_rax into @d_tax, next_order_id into @o_id from
district where w_id = : w_id and d_id = : d_id;
6 Update district set next _order_-id = o_-id + 1 where w_id =
:w_id AND d_id = : d_id,;
7 end alkaline—subtransaction
8 Select discount into @discount, last _name into @name, credit
into @creditr where w_id = : w_id and d_id = : d_id and
c_id = : c_id
9 Insert into orders values (: w_id, : d_id, @o_id, ...);
10 Insert into new_orders values (: w_id, : d_id, o_-id);
11 For each ordered item, insert an order line, update stock level, and

calculate order total
12 end BASE transaction

Applications used for the experiments

e TPC-C benchmark : database performance standard

— 5 transactions (new-order, payment, stock-level, order-status and
delivery)

— New-order and payment are responsible for 43.5% of total number of
transactions

e Fusion Ticket: open source ticketing application in PHP and
MySQL
— Includes several transactions
— Create-order and payment most frequent and performance critical

e Micro benchmark:
— Contention ratio

— Contending transaction position
— Read-Write ratio

Did Salt win the award? (Yes...)

Base-ify: new-order and

payment
TPC-C
2000 — : . ;

j
|

g 1500):(Salt
|
31000 :
S !
& X
— 500 i
0 X
0 o R)

| 1 | | |
0 2000 4000 6000 8000 1JOOOO 12000

Throughput (transactions/sec)

6.6x higher

Latency (ms)

250

Base-ify: Create-order and
payment

Fusion Ticket

200

150

100

50

0 x—x—-*-i .

0

10

1 | | 1 |
bo 2000 3000 4000 5000 6000 4000 8000
Throughput (transactions/sec)

6.5x higher

Throughput (transactions/sec)

Did Salt win the award? (Contd...)

Performance gain becomes stagnant

Throughput (transactionsfsec)

0 (ACID) 1 2 3 4 5
Number of BASE-ified Transactions

Fusion Ticket

0 (ACID) 1 2 3 RAW OPS
Number of BASE-ified Transactions

Did Salt win the award? (Contd...)

— 100000
(9]
a
R
o
T 10000 :
© £
© :
C
©
3 1000
e
[@)]
-
<
e
= 100

0 Salt
Kot u
e a — 2 10000 % <
o AE:.:——A——--.A--—-A---—A——--.ﬁ.———_,A___—A.____A____J;
- e § . Salt w/o optimization
..~ a9 Hemeneo .
: g .
- Salt w/o optimization = 1000 | ACID 7 oy
] / X, < > b
g] 3
: ACID SN E]
I RV >
.,_2 9
c
I ! I - 100 I I I I I L I I
0 0.0001 0.001 0.01 0.1 0 1 2 3 4 5 6 7 8 9
Contention Ratio (1/#Rows) # Operations after contention
’G T T T T
£ 100000 § E
0
S L Salt
© Lo TTeeee Ll]
c Y A
® 10000 ., Salt w/o optimization ™~~~ 4
5 .]
s o —
-}
Q
< S
=
© 1000t ACD T Ko
E : 1 1 1 1]
0 20 40 60 80 100

Write Ratio (%)

Discussion & Q-A

* Pros:
— Performance gain is drastic
— Control in the hands of the programmer

e Cons:

— Cassandra allows batching of commands into groups to form
transactions called atomic batches

— Leverage the power of MySQL clusters - MySQL does not allow nested
transactions and MySQL now has several NoSQL/NewSQL like features

— Programming complexity - the difficulty of identifying the transactions
that need to be converted and verifying the correctness is a daunting
task

Thank Youl!

