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The tale of ACID...

 Transaction - Basic unit of
work in an RDBMS

* ACID

— Atomicity: all or nothing

— Consistency: always leave a
database in a consistent
state

— Isolation: every transaction
is completely isolated

— Durability: once committed
always recorded
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The tale of ACID...(Oh No!)
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What needs to be done to
achieve this abstraction?
— 2 Phase Commit

— Locks

What baggage do such
abstractions come with?

— Performance is sacrificed



Rise of BASE...

* BASE

— Basically Available - does

guarantee availability, in
terms of CAP theorem

— Soft State - State of the
system may change over
time

— Eventually Consistent -

. data will be consistent at

THE DARK KNIGHT RISES replicas eventually
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Rise of BASE... (What now?)

* Problem?

— Complexity of
programming

— Consistency
Management
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Is there no middle ground?

* Pareto Principle - 80-20 Rule

* Example:

— Fusion Ticket (open source ticketing application)

— Total of 11 different types of Transactions of
which just 2 are performance critical



Introducing... BASE transactions

Manually Identify the key
transactions that cause the
performance bottleneck

A

Base-ify these transactions by
breaking the transaction into
alkaline sub transactions which
are still contained within the
same BASE transaction
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Acid Transaction
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Solution being? Restrict Interaction

ACID BASE Alkaline
ACID No No No
BASE No Yes* Yes*
Alkaline No Yes* Yes**

* _intermediate committed state of alkaline sub transactions
** - only read alkaline sub transactions



Base Transactions (Contd...)

* Major life events of BASE transactions: Accept &
Commit

* How does a BASE transaction provide ACID
abstraction?
— Atomicity - once accepted will eventually commit

— Consistency - Interactions keep ACID and BASE
transactions isolated

— Isolation - SALT Isolation coming up next..

— Durability - Accepted BASE transactions are
guaranteed to be durable through logging



Introducing the MVP — Salt Isolation

e Uses Locks - Isolation level
chosen is Read Committed

 Locks:

ACID Locks - write with
any other operation
conflicts

Alkaline Locks - alkaline
sub transactions isolated
from ACID and other
alkaline sub transactions

Saline Locks - ACID
isolated from BASE, but
increased concurrency by
exposing intermediate
state to of BASE
transactions to other BASE
transactions
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So does it actually work?

* Implementation:
— Modified MySQL to allow BASE transactions and Alkaline Sub-
transactions

— Allow alkaline and saline locks

* QOptimizations:
— Early commit - A client that issues a BASE transaction sees the
transaction completion when when its first Alkaline sub transaction

commits
— Failure recovery - Logging with redo and roll forward

— Transitive dependencies - Per object queue

— Local Transactions

* Replication of data was done across 10 partitions and each partition was
three-way replicated

e Evaluated: Performance Gain, Programming Effort, Contention Ratio



Case Study

1 begin BASE transaction
2 Check whether all items exist. Exit otherwise.
3 Select w_rax into @w_rax from warehouse where w_id = : w_id;
4 begin alkaline—subtransaction
5 Select d_rax into @d_tax, next_order_id into @o_id from
district where w_id = : w_id and d_id = : d_id;
6 Update district set next _order_-id = o_-id + 1 where w_id =
:w_id AND d_id = : d_id,;
7 end alkaline—subtransaction
8 Select discount into @discount, last _name into @name, credit
into @creditr where w_id = : w_id and d_id = : d_id and
c_id = : c_id
9 Insert into orders values (: w_id, : d_id, @o_id, ...);
10 Insert into new_orders values (: w_id, : d_id, o_-id);
11 For each ordered item, insert an order line, update stock level, and

calculate order total
12 end BASE transaction



Applications used for the experiments

e TPC-C benchmark : database performance standard

— 5 transactions (new-order, payment, stock-level, order-status and
delivery)

— New-order and payment are responsible for 43.5% of total number of
transactions

e Fusion Ticket: open source ticketing application in PHP and
MySQL
— Includes several transactions
— Create-order and payment most frequent and performance critical

e Micro benchmark:
— Contention ratio

— Contending transaction position
— Read-Write ratio



Did Salt win the award? (Yes...)

Base-ify: new-order and
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Throughput (transactions/sec)

Did Salt win the award? (Contd...)

Performance gain becomes stagnant
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Did Salt win the award? (Contd...)
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Discussion & Q-A

* Pros:
— Performance gain is drastic
— Control in the hands of the programmer

e Cons:

— Cassandra allows batching of commands into groups to form
transactions called atomic batches

— Leverage the power of MySQL clusters - MySQL does not allow nested
transactions and MySQL now has several NoSQL/NewSQL like features

— Programming complexity - the difficulty of identifying the transactions
that need to be converted and verifying the correctness is a daunting
task



Thank Youl!



