
PriorityMeister:
Tail Latency QoS for Shared

Networked Storage
Timothy Zhu, Alexey Tumanov, Michael A. Kozuch,

Mor Harchol-Balter, Gregory R. Ganger
SoCC 2014

Presenter: Yosub Shin

Motivation

• Internet companies want better tail latencies

• 99.9th or even 99.99th percentiles matter

• e.g. Displaying Facebook newsfeed:  
Requires~1000 RPC calls. If 999 calls return in
50ms and one call takes 3s, the end-to-end
response time = 3s.

2

Challenges

• Bursty workloads cause queuing

• End-to-end latency is affected by multiple stages

• Outgoing network packets

• Storage requests

• Incoming network packets

3

Cake
• Cake: Reactive feedback-control built for tail latency
• Bad for bursty workloads
• Handles only one latency-sensitive workload
• Impossible to apply network QoS

Prior Works

4
Non-bursty workload Bursty workload

Cake performs bad at burst
of SLO violations high

PM always
performs good

Enter PriorityMeister
• Proactive QoS(Quality of Service) system

• Achieves end-to-end latency SLO(Service Level Objective)

• Multi-tenant, multi-resource

• How?

• Priority

• Rate Limiting

5

I want Workload A to respond in 30ms,
 Workload B to respond in 50ms.

Contributions of This Paper

• Algorithm that automatically determines priority and
rate limits for each workload at each stage

• Built a real QoS system consisting of network and
storage which outperforms existing approaches

• Robust to mis-estimation of storage or network
performance and workload mis-behavior

6

Priority & Rate Limiting

• Priority: In order to meet tight latency requirements

• NOT to be confused with importance to the user

• Rate Limiting: To prevent starvation of lower
priority workloads

Intuition

7

e.g. I want Workload A to respond in 30ms,
 Workload B to respond in 50ms

Intuition

8

Requests from Workload A
gets higher priority

• One can proceed only if he throws token into bucket
• One can throw token into bucket only if it is not full
• Bucket leaks at rate ‘r’ in unit time.

Bucket is full!
Can’t throw, should wait…

Bucket is not full!
Can throw and proceed…

Components
Architecture Overview

9

• Queue at each component of machine(Network, Storage)
• Each stage has independent priorities and rate limits

Workflow
Architecture Overview

10

Workflow
Architecture Overview

10

User initiates system
with SLO requirements

Workflow
Architecture Overview

10

User initiates system
with SLO requirements

Generate rate limits

Workflow
Architecture Overview

10

User initiates system
with SLO requirements

Generate rate limits

Determine
priority orderings

Workflow
Architecture Overview

10

User initiates system
with SLO requirements

Generate rate limits

Determine
priority orderings

Send priorities and
rate limits to enforcers

Leaky Token Bucket Model
• Token(s) == size of request  

Storage: Amount of storage time required  
Network: Number of transmitted bytes

• (r, b) pair determines bucket’s
behavior

• r: leaking rate

• b: bucket size(in #tokens)

• Throwing a new token into
bucket only allowed when
bucket not full

How to Limit Rates?

11

Workload Analysis

• Assume highest priority for WA, calculate (r, b) pairs big enough for the trace to run under SLO

• Want to decide smallest (r, b) pair s.t. lower priority workloads are allowed to run under their SLOs

• Larger bucket size(b) leads to higher tail latency in medium priority workload WB

• Larger rate(r) leads to higher tail latency in low priority workload WC

• Key Idea: Use multiple (r, b) pairs on the blue line and allow throwing tokens into bucket only
when tokens can be added to all (r, b) buckets.

How to Limit Rates?

12

rate limit pairs of high priority workload WA latency of medium priority workload WB latency of low priority workload WC

Large bucket, low rate

High rate, small bucket

Satisfies both

(r1, b1)

(100 - 99.4)% of requests
don’t meet SLO(dashed line).

High priority workload
unhindered

High priority workload
saturates bucket.

(r,b) too small

given given

Workflow
How to determine priorities?

13

Determine
priority orderings

Prioritizer Algorithm
• Input: workload SLOs, rate limits

• Output: priorities for each stage at each workload s.t.  
each workload’s estimated worst-case latency is less than SLO

• |(# workloads)|!^|(# stages)| possibilities: too large ☹

• Polynomial search possible(w/ greedy algorithm)! ☺

1. Assign lowest priority workload first!(If workload can still satisfy SLO)

2. For unassigned workload w/ lowest violation:

• For stage w/ lowest latency, assign lowest priority 
(Intuition: Take best performing workload/stage, assign lowest priority s.t. worst-case latency is improved)

How to determine priorities?

14

via Latency Analysis Model

(estimated latency) - (SLO)

Latency Analysis Model
• Input: priorities assignment, rate limits

• Output: worst-case latencies for each stage at each workload

• α(t): max. # bytes that arrive in any period of time t

• β(t): min. # bytes serviced in any period of time t

• Worst-case latency: max. horizontal dist. b/w α and β

• αw(t) = mini(ri*t + bi) (fastest rate at which rate limiter allows requests through)

• βw(t): Calculated with Linear Programming  
(time, flow, rate limit, and work conservation constraints)

How to estimate worst-case latencies given priorities?

15

Experiments
• Tail latency performance

• Latency under bursty workloads

• Mis-behaving workloads

• Network bottlenecked workloads

• Latency under estimator inaccuracy

• Latency under varying SLO permutations

16

Tail Latency Performance(1/2)
Experiments

17

Only PriorityMeister
 always satisfies SLO

PM PriorityMeister

Cake Reactive
Control

bySLO Priority for
lower SLO

EDF Earliest
Deadline First

PS Proportional
Sharing

Workload Workload A Workload B Workload C
Trace Display Ad MSN Storage LiveMaps

SLO Lines

Tail Latency Performance(2/2)
Experiments

18

All policies
except PM

violates SLOs

Latency Under Bursty Workload
Experiments

19

Both satisfies
SLO at 99%

Cake violates SLO > 99%,
while PM satisfies SLO

Under extreme burstiness,
both fails to satisfy SLO

CA2 : Squared coefficient of variation of inter-arrival times
 Higher value means burstier workload

Mis-behaving Workloads
Experiments

20

Workload D
mis-behaves

(hogs network)

W
or

kl
oa

d
D

W
or

kl
oa

d
C

Initially both
workloads

satisfy SLOs

All policies
except PM
no longer

satisfy SLO

Network Bottlenecked Workloads
Experiments

21

SLO violated for bySLO
and no network QoS

Workload K runs on Ramdisk.
Workload K has tightest SLO(highest priority)

Performs unnecessarily better than SLO.

PM assigns workload K lower
network priority thus improving

Workload C and J’s tail latencies

Scenario: Workload K runs on Ramdisk(better storage latency), and others run normal disk
 SLO Level(C > J > K)

PriorityMeister

• Proactive end-to-end tail latency QoS system

• Combines priorities and rate limits

• Automatically configures itself

• Performs well under real world bursty workloads

Summary

22

Comments
• Pros

• Unique system that provides good tail latency

• Allows multi-tenant, multi-resources

• Extensive experiments

• Cons

• Prior computation of trace is not always possible

• No mention on fault tolerance

• No mention on how to ensure throughput SLO

23

Discussion
• What do we lose at cost of better tail-latency?

• What semantic meanings does rate(r) and bucket
size(b) of leaky token bucket model have?

• Is it possible to combine reactive(Cake) and
proactive(PriorityMeister) approach? Would it
perform better than both?

• Experiment shows bySLO(just assigning higher
priority for lower SLO) performs really well. Why so?

24

Thank You!

Backup Slides

Enforcers
• Storage enforcer

• # tokens == Amount of storage time consumed by
request

• Queues on top of NFS

• Network enforcer

• # tokens == Number of transmitted bytes by request

• Enforce priority with network QoS level

How enforcers work?

27

• Estimate βw(t): Maximize interference with higher priority workloads
• Let’s estimate t=βw-1(y) instead
• For queue q, define

Linear Programming
Latency Analysis Model

28

tq
in

, tq
out

, Rq

k

, R0q
k

Time constraints
tq
in

 tq
out

tq
0

out

= tq
in

Rate limit constraints

Work conservation constraints
R0q

k

�Rq

⇤

k

 r
i

⇥ (tq
out

� tq⇤
in

) + b
i

, q*: workload k’s first queue

X

k

(R0q
k

�Rq

k

) = B
q

⇥ (tq
out

� tq
in

)

Flow constraints
Rq

k  R0q
k

Objective function: (R0qn
w �Rq1

w) = ymax(tqn
out

� tq1
in

)

, where

Traces
Experiments

29

Other QoS Policies
• Proportional sharing (ps)

• Each workload gets equal share of storage time

• Cake

• Dynamically adjust proportional shares to meet latency SLOs

• Earliest Deadline First (EDF)

• Deadline = workload's SLO

• Prioritization by SLO (bySLO)

• Simply assign workload priorities in order of workload latency SLOs

Related Works

30

Latency Under Estimator Inaccuracy
Experiments

31

Accurate Estimator (same as tail latency performance experiment)

Inaccurate Estimator (Token counting does not reflect reality well)

PM works well for both
accurate / inaccurate estimators

Latency Under Varying SLO Permutations
Experiments

32

For different permutations of SLO levels,
only PM satisfies SLOs for all permutation

