
Hive - A Warehousing Solution
Over a Map-Reduce Framework

Agenda

•  Why Hive???

•  What is Hive?

•  Hive Data Model

•  Hive Architecture

•  HiveQL

•  Hive SerDe’s

•  Pros and Cons

•  Hive v/s Pig

•  Graphs

Data Analysts with Hadoop

Challenges that Data Analysts
faced

•  Data Explosion

 - TBs of data generated everyday

Solution – HDFS to store data and Hadoop Map-
Reduce framework to parallelize processing of Data

What is the catch?

-  Hadoop Map Reduce is Java intensive

-  Thinking in Map Reduce paradigm can get tricky

… Enter Hive!

Hive Key Principles

HiveQL to MapReduce

Data Analyst

Hive Framework

SELECT COUNT(1) FROM Sales;

rowcount,1

MR JOB Instance

rowcount, N

Sales: Hive table

rowcount,1

N

Hive Data Model

Data in Hive organized into :

•  Tables

•  Partitions

•  Buckets

Hive Data Model Contd.

•  Tables
- Analogous to relational tables

-  Each table has a corresponding directory in HDFS

-  Data serialized and stored as files within that directory

- Hive has default serialization built in which supports
compression and lazy deserialization

- Users can specify custom serialization –deserialization
schemes (SerDe’s)

Hive Data Model Contd.

•  Partitions
-  Each table can be broken into partitions

-  Partitions determine distribution of data within subdirectories

Example -

CREATE_TABLE Sales (sale_id INT, amount FLOAT)

PARTITIONED BY (country STRING, year INT, month INT)

So each partition will be split out into different folders like

Sales/country=US/year=2012/month=12

Hierarchy of Hive Partitions

/hivebase/Sales

/country=US
/country=CANADA

/year=2012

/year=2015

/year=2012

/year=2014
/month=12

/month=11 /month=11

Hive Data Model Contd.

•  Buckets

-  Data in each partition divided into buckets

-  Based on a hash function of the column

-  H(column) mod NumBuckets = bucket number

-  Each bucket is stored as a file in partition directory

Architecture

Externel Interfaces- CLI, WebUI, JDBC,
ODBC programming interfaces

Thrift Server – Cross Language service
framework .

Metastore - Meta data about the Hive
tables, partitions

Driver - Brain of Hive! Compiler,
Optimizer and Execution engine

Hive Thrift Server

•  Framework for cross language services
•  Server written in Java
•  Support for clients written in different languages

 - JDBC(java), ODBC(c++), php, perl, python scripts

Metastore

•  System catalog which contains metadata about the Hive tables
•  Stored in RDBMS/local fs. HDFS too slow(not optimized for random

access)
•  Objects of Metastore

Ø  Database - Namespace of tables
Ø  Table - list of columns, types, owner, storage, SerDes
Ø  Partition – Partition specific column, Serdes and storage

Hive Driver

•  Driver - Maintains the lifecycle of HiveQL statement
•  Query Compiler – Compiles HiveQL in a DAG of map reduce tasks
•  Executor - Executes the tasks plan generated by the compiler in proper
 dependency order. Interacts with the underlying Hadoop instance

Compiler

•  Converts the HiveQL into a plan for execution

•  Plans can

 - Metadata operations for DDL statements e.g. CREATE

 - HDFS operations e.g. LOAD

•  Semantic Analyzer – checks schema information, type checking,
implicit type conversion, column verification

•  Optimizer – Finding the best logical plan e.g. Combines multiple
joins in a way to reduce the number of map reduce jobs, Prune
columns early to minimize data transfer

•  Physical plan generator – creates the DAG of map-reduce jobs

HiveQL
DDL :

 CREATE DATABASE
 CREATE TABLE
 ALTER TABLE
 SHOW TABLE
 DESCRIBE

DML:
 LOAD TABLE
 INSERT

QUERY:
 SELECT
 GROUP BY
 JOIN
 MULTI TABLE INSERT

Hive SerDe

•  SELECT Query

 Record

Reader

Deserialize

Hive Row
Object

Object
Inspector

Map Fields

Hive Table

End User

Ø  Hive built in Serde:
Avro, ORC, Regex etc

Ø  Can use Custom

SerDe’s (e.g. for
unstructured data
like audio/video
data,
semistructured
XML data)

Good Things

•  Boon for Data Analysts

•  Easy Learning curve

•  Completely transparent to underlying Map-Reduce

•  Partitions(speed!)

•  Flexibility to load data from localFS/HDFS into
Hive Tables

Cons and Possible
Improvements

•  Extending the SQL queries support(Updates, Deletes)

•  Parallelize firing independent jobs from the work DAG

•  Table Statistics in Metastore

•  Explore methods for multi query optimization

•  Perform N- way generic joins in a single map reduce job

•  Better debug support in shell

Hive v/s Pig

Similarities:
Ø  Both High level Languages which work on top of map reduce framework
Ø  Can coexist since both use the under lying HDFS and map reduce

Differences:
u Language

Ø  Pig is a procedural ; (A = load ‘mydata’; dump A)
Ø  Hive is Declarative (select * from A)

u Work Type
Ø  Pig more suited for adhoc analysis (on demand analysis of click stream
 search logs)
Ø  Hive a reporting tool (e.g. weekly BI reporting)

Hive v/s Pig

u Users
Ø  Pig – Researchers, Programmers (build complex data pipelines,

 machine learning)
Ø  Hive – Business Analysts

u  Integration
Ø  Pig - Doesn’t have a thrift server(i.e no/limited cross language support)
Ø  Hive - Thrift server

u User’s need
Ø  Pig – Better dev environments, debuggers expected
Ø  Hive - Better integration with technologies expected(e.g JDBC, ODBC)

Differences:

Head-to-Head
(the bee, the pig, the elephant)

Version: Hadoop – 0.18x, Pig:786346, Hive:786346

REFERENCES

•  https://hive.apache.org/

•  https://cwiki.apache.org/confluence/display/Hive/
Presentations

•  https://developer.yahoo.com/blogs/hadoop/comparing-pig-
latin-sql-constructing-data-processing-pipelines-444.html

•  http://www.qubole.com/blog/big-data/hive-best-practices/

•  Hortonworks tutorials (youtube)

•  Graph : https://issues.apache.org/jira/secure/attachment/
12411185/hive_benchmark_2009-06-18.pdf

