Hive - A Warehousing Solution
Over a Map-Reduce Framework




Why Hive???
What is Hive?
Hive Data Model
Hive Architecture
HiveQL

Hive SerDe’s

Pros and Cons

Hive v/s Pig

Graphs




Data Analysts with Hadoop




Challenges that Data Analysts
faced

* Data Explosion

- TBs of data generated everyday

Solution — HDEFS to store data and Hadoop Map-
Reduce framework to parallelize processing of Data

What 1s the catch?
- Hadoop Map Reduce 1s Java intensive

- Thinking in Map Reduce paradigm can get tricky




... Enter Hive!




Hive Key Principles

Defines Data

SOL-Like Warehouse
query language Infrastructure
called QL

Rllows | It provides tools
programmers to to enable easy

plug-in custom data ETL
mappers and
reducers




HiveQL to MapReduce

Data Axalyst

Hive Framework

Driver
(Compiler, Optimizer, Executor)

!

SELECT COUNT(1) FR

Sales;

rowcount, N

Sales: Hive table

rowcount, 1

MR JOB Instance




Hive Data Model

Data in Hive organized into :

 Tables

o Partitions

 Buckets




Hive Data Model Contd.

 Tables

- Analogous to relational tables
- Each table has a corresponding directory in HDFS
- Data serialized and stored as files within that directory

- Hive has default serialization built 1n which supports
compression and lazy deserialization

- Users can specify custom serialization —deserialization
schemes (SerDe’s)




Hive Data Model Contd.

 Partitions

- Each table can be broken into partitions

- Partitions determine distribution of data within subdirectories
Example -

CREATE_TABLE Sales (sale_id INT, amount FLOAT)
PARTITIONED BY (country STRING, year INT, month INT)
So each partition will be split out into different folders like

Sales/country=US/year=2012/month=12




Hierarchy of Hive Partitions

/hivebase/Sales

/country=US
/country=CANADA

/year=2012 /year=2012

/year=2015
/year=2014

/month=12
/month=11 /month=11




Hive Data Model Contd.

Buckets

Data in each partition divided into buckets
Based on a hash function of the column
H(column) mod NumBuckets = bucket number

Each bucket 1s stored as a file in partition directory




Architecture

Externel Interfaces- CLI, WebUI, JDBC,
ODBC programming interfaces

Thrift Server — Cross Language service
framework .

Metastore - Meta data about the Hive
tables, partitions

Driver - Brain of Hive! Compiler,
Optimizer and Execution engine




Hive Thrift Server

Driver
(Compiler, Optimizer, Executor)

» Framework for cross language services
» Server written in Java

* Support for clients written in different languages
- JDBC(java), ODBC(c++), php, perl, python scripts




Metastore

(Compiler, Optimizer, Executor)

System catalog which contains metadata about the Hive tables
Stored in RDBMS/local fs. HDFS too slow(not optimized for random
access)
Objects of Metastore
» Database - Namespace of tables
» Table - list of columns, types, owner, storage, SerDes
» Partition — Partition specific column, Serdes and storage




Hive Driver

Driver
(Compiler, Optimizer, Executor)

* Driver - Maintains the lifecycle of HiveQL statement

* Query Compiler — Compiles HiveQL in a DAG of map reduce tasks

« Executor - Executes the tasks plan generated by the compiler in proper
dependency order. Interacts with the underlying Hadoop instance




Compiler

Converts the HiveQL into a plan for execution

Plans can
- Metadata operations for DDL statements e.g. CREATE
- HDFS operations e.g. LOAD

Semantic Analyzer — checks schema information, type checking,
implicit type conversion, column verification

Optimizer — Finding the best logical plan e.g. Combines multiple
joins in a way to reduce the number of map reduce jobs, Prune
columns early to minimize data transfer

Physical plan generator — creates the DAG of map-reduce jobs




HiveQL

CREATE DATABASE
CREATE TABLE
ALTER TABLE
SHOW TABLE
DESCRIBE

LOAD TABLE
INSERT
QUERY:
SELECT
GROUP BY
JOIN
MULTI TABLE INSERT




Hive SerDe

« SELECT Query

» Hive built in Serde:
Avro, ORC, Regex etc

» Can use Custom
SerDe’s (e.g. for
unstructured data
like audio/video
data,
semistructured
XML data)

Record
Reader

\

Deserialize

/

Hive Row
Object

Object

> Inspector

Map Fields

Hive Table




Good Things

Boon for Data Analysts

Easy Learning curve

Completely transparent to underlying Map-Reduce
Partitions(speed!)

Flexibility to load data from localFS/HDEFS into
Hive Tables




Cons and Possible
Improvements

Extending the SQL queries support(Updates, Deletes)
Parallelize firing independent jobs from the work DAG
Table Statistics in Metastore

Explore methods for multi query optimization

Perform N- way generic joins in a single map reduce job

Better debug support in shell




Similarities:
» Both High level Languages which work on top of map reduce framework
» Can coexist since both use the under lying HDFS and map reduce

Differences:

€ Language
» Pigisaprocedural ; (A =load ‘mydata’; dump A)
» Hive is Declarative (select * from A)

€ Work Type
» Pig more suited for adhoc analysis (on demand analysis of click stream
search logs)
» Hive a reporting tool (e.g. weekly BI reporting)




Hive v/s Pig

Differences:

@ Users
» Pig — Researchers, Programmers (build complex data pipelines,
machine learning)
» Hive — Business Analysts

@ Integration
» Pig - Doesn’t have a thrift server(i.e no/limited cross language support)
» Hive - Thrift server

@ User’s need
» Pig — Better dev environments, debuggers expected
» Hive - Better integration with technologies expected(e.g JDBC, ODBC)




Head-to-Head
(the bee, the pig, the elephant)

Hive, PIG and Hadoop benchmark

(7]
T
c
o
o
[
]
£
[
E
[

Grep select rankings select uservisits rankings uservisits
aggregation join

Queries

Version: Hadoop — 0.18x, Pig:786346, Hive: 786346




REFERENCES

https://hive.apache.org/

https://cwiki.apache.org/confluence/display/Hive/
Presentations

https://developer.vahoo.com/blogs/hadoop/comparing-pig-
latin-sqgl-constructing-data-processing-pipelines-444.html

http://www.qubole.com/blog/big-data/hive-best-practices/

Hortonworks tutorials (youtube)

Graph : https://issues.apache.org/jira/secure/attachment/
12411185/hive_benchmark_2009-06-18.pdf




