
C-Hint: An Effective and Reliable Cache
Management for RDMA-Accelerated

Key-Value Stores
Yandong Wang, Xiaoqiao Meng, Li Zhang, Jian Tan

Presented by: Guangxiang Du

2015/4/21 1

What’s RDMA and why RDMA?
Definition:
RDMA is the ability of accessing memory on a remote machine without
interrupting the processing of the CPU on remote machine.

Characteristics:

-Kernel Bypass: Applications can perform data transfer directly from
userspace, without the need of data-copy and processing in network
software layer (TCP/IP) in OS kernel.

-No remote CPU involvement: Applications can access remote memory
without consuming any CPU power in the remote machine.

2015/4/21 2

cont'd

Benefits:

-Low latency

-High Throughput

-Low Remote side CPU footprint
2015/4/21 3

System Background

- Clients have operations like GET, SET, REMOVE, etc.

- Using two-side Verb-based Send/Recv for SET, REMOVE

- First time access to an item with two-side Send/Recv (obtain remote
address), later GET operations will be one-side RDMA read

2015/4/21 4

First time read

Later read

Two side verb-
based SET

- one side RDMA read and server write create race condition?

- There have been several solutions proposed, such as checksum or
cache line versioning.

2015/4/21 5

- Server Unaware of RDMA reads, difficult to keep track of popularity of
cached items. (inefficient cache replacement scheme leads to severe
performance downgrade)

- when the server evicts an items, it needs to invalidate the remote
pointer cached in the client side. (broadcast on every eviction is
significant overhead)

Challenges for Cache Management brought
by RDMA

2015/4/21 6

- Goals:

- 1) deliver sustainable high hit rate with limited cache capacity.

- 2) not to compromise the benefit of RDMA read

- 3) provide reliable resource reclamation scheme.

- Design decisions:

- 1) Client-Assisted Cache Management

- 2) Managing Key-Value Pairs via Leases

- 3) Popularity Differentiated Lease Assignment

- 4) Classifying Hot-Cold Items for Access History Report

- 5) Delayed Memory Reclamation

Overview of C-Hint

2015/4/21 7

Client-Assisted Cache Management
- As said before, server alone can’t track the accesses of the cached

items.

- Therefore, Clients are required to propagate partial access history of
key-value pairs to server periodically.

- The server aggregate the information to establish a global view of
access pattern.

2015/4/21 8

- The remote pointer contains a time range (lease) within which the
client is allowed to conduct GET with RDMA read. (server side
guarantee that the particular item is available and not corrupted until
the lease expires.)

- Lease will not be extended unless the clients send a verb-based
renewing message to server asking for extension.

Managing Key-Value Pairs via Leases

2015/4/21 9

- How long a lease term should be?

- too short? Remote pointers cached by clients get invalidated
frequently, low utilization of RDMA.

- too long? Unpopular items consume much of the space of server
cache.

- Static determined lease term? Or changing dynamically?

- C-hint use approximation of Multi-queue algorithm to determine the
lease term for different key-value pairs adaptively according to their
recency and popularity.

Popularity Differentiated Lease Assignment

2015/4/21 10

Cont’d
-Multiple LRU queues

-qid = log2(c), c is approximate access
count, updated on server-aware
operations

- term = qid * 𝛼

- If head items of LRU queues expires,
demoted to queues of smaller id (take
into account of aging popularity)

- Intuition: Try to assign recent, popular
item with long lease term.

2015/4/21 11

Classifying Hot-Cold Items for Access History
Report

- Server needs to aggregate history report from lots of clients, heavy loading,
harmful to QoS of latency sensitive operations.

- Clients use Adaptive Replacement Algorithm (2 LRU queues) to only report
history of hot items. (smaller report)

- Further optimization: clients use RDMA write to write reports to dedicated
memory locations.

2015/4/21 12

- After REMOVE, C-hint mark item deleted, but reclaiming the memory
only after the lease expires.

- Avoid expensive broadcast to invalidate the client-cached remote
pointers.

Delayed Memory Reclamation

2015/4/21 13

Performance Evaluation

- Hit Ratio

- Comparison between:
- Original HydraDB (random replacement scheme)

- Faithful LRU (disabled RDMA, as baseline)

- Apprxi-LRU (C-hint design, except not Multi-queue, single LRU queue)

- Faithful Multi-queue (disabled RDMA, as baseline)

- C-Hint design

2015/4/21 14

Experimental Environment
- 5 x86_64 machines connected through InfiniBand

- 4 server instances on 2 different machines, clients on the rest

- Benchmark
- Yahoo! Cloud Serving Benchmark (YCSB 0.14)

- Generate 3 workloads, (100% GET + 0% SET) (95% GET + 5% SET) (90% GET +
10% SET)

- Each 300 million operation, 80 million key-value pairs (23B key + 1KB value)

2015/4/21 15

Hit Ratio Analysis

2015/4/21 16

Latency Analysis

2015/4/21 17

RDMA read

slow verb-based read

Fast verb-based read

Fast verb-based write Slow verb-based write

There are more requests whose latencies
are below 20 us in the c-hint curve, which

respond to rdma read.

That means PDLA is better that static
determined lease term in terms of rdma

utilization

Impact of Access History Report

2015/4/21 18

- 1) vulnerable to malicious clients in a wild environment
- Defer to future research topic

- 2) the scale of experiment may not be enough
- Only with 5 machines and 4 servers instances

- 3) unsynchronized clock between clients and server lead to
inconsistent view of lease term

2015/4/21 19

Cons/Criticism/thoughts

Summary

- C-Hint addresses 3 challenges:
- 1) how to track popularity of cached items although server unaware of RDMA

reads

- 2) effectively, reliably reclaim memory on server

- 3) improve the hit ratio without compromising the performance benefit of
RDMA

2015/4/21 20

