TAG: A TINY AGGREGATION SERVICE
FOR AD-HOC SENSOR NETWORKS

SAMUEL MADDEN, MICHAEL J. FRANKLIN, JOSEPH

HELLERSTEIN, AND WEI HONG

Proceedings of the Fifth Symposium on Operating Systems Design and implementation (OSDI
'02), December @ - 11, 2002, Boston, MA, USA.

Motivation
—

Used to monitor and collect data about various phenomenon.
= Wild-life, volcanoes, data centers, CPU temperatures, buildings.

Applications require summary/aggregations rather raw sensor data.
Users may not be well versed with the low-level optimizations.

Important to minimize the power consumption.

How does Tiny AGgregation service help?:

* High level language similar to SQL for querying.

* Distributes the query in the network.

* Queries executed to reduce communication and power.

* Enables in-network aggregation of the results.
* Order of magnitude reduction in communication compared

1) Earthquake or eruption occurs
2) Nodes detect seismic event

3) Each node sends event report
to base station

to centralized approach.

Base station

Background

Smart Sensors:

Wireless, Battery powered.

Really small around 2cm x 4cm x 1cm.
Motes by UC Berkeley.

Single-channel half-duplex radio.
Unreliable message delivery.

Battery capabilities on motes:

Small batteries: AA battery packs or coin cells.
Radio communication dominates the battery
consumptions on the motes.
= Power consumption: Transmission of single
bit = 800 instructions.
Calls for power conserving algorithms.

Background

Ad-Hoc Networks:

* Dynamic in nature as topology can change.

* Identify and route data between devices without
prior knowledge.

Tree based routing in Ad-Hoc networks:

* Motes arrange themselves as a tree

* Node interfacing with the user act as the root.

* Root sends this message periodically to adapt to
new network changes.

TAG requirements:

* Root should be able to propagate a message in the
whole network.

* Aroute from a node to the root.

* At-most once semantics for message delivery.

a
a @
a o a

Query Model

e SQL-style query syntax.
= Qverasingletable, sensors.
" |t’sschemais known to the base station.
= Stream of values.
= Each mote hasasmall catalogof
attributes.

m Eachsensorisarowinthesensorstable.

* Example: SELECT AVG (volume), room
= Monitor occupancy of conference rooms FROM sensors
WHERE floor = 6
ofafloor. GROUP BY room
= Use themicrophones. HAVING AVG (volume) >

threshold
EPOCH DURATION 30s

Query Model

WHERE clause:

= Filters out individual sensor readings, locally at mote, before

aggregation.

GROUP BY clause:
. L) SELECT {agg(expr), attrs}
= Attribute based partitioning of sensor readings. FROM sensors
WHERE {selPreds}
HAVING clause: GROUP BY {attr)

HAVING {havingPreds}

= Suppress groups that do not satisfy the predicates. EPOCH DURATION &

EPOCH DURATION:
= Specifies how often the updates must be delivered.
Records:
= Consists of one <group id, aggregate value> pair per group.
= Readings used to compute an aggregate record all belong to the

same time interval, or epoch.

Aggregates

Aggregates supported by TAG:
e SQL supports: MIN, MAX, SUM, AVERAGE, and COUNT

 TAG can support a broader set.

Aggregates Implemented using 3 functions:

 Mergingfunction f: Merges partial state record.
* |nitializeri: Instantiates state record for single sensor value.
e Evaluatore: Computesactual value from the partial state

record.

Aggregates

AVERAGE aggregate:
e Each partial state record is of the form <SUM, COUNT>
* Mergingfunctionf:
* f(<SUM1,COUNT1>,<SUM2, COUNT2>)=<SUM1+SUM2,
COUNT1 + COUNT2>
* Initializeri:
* j(sensor_value)=<sensor value, 1>
* Evaluatore:
* e (<SUM, COUNT>)=SUM/COUNT

Aggregates

Aggregates Taxonomy:
* Definedifferent dimensions for a general classification of the aggregates
functions
1. DUPLICATE SENSITIVITY
2. EXEMPLARY or SUMMARY
3. MONQOTONIC
4. PARTIALSTATE requirements

MAX, MIN COUNT, SUM AVERAGE MEDIAN COUNT HISTOGRAM
DISTINCT
Duplicate NO YES YES YES NO YES
Sensitive
Exemplary, E S S E S S
Summary
Monotonic YES YES NO NO YES NO
Partial State Distributive Distributive Algebraic Holistic Unique Content-

Sensitive

In-Network Aggregation

Aggregation Consists of two phases:

e Distributionphase: Queries are pusheddown intothe
network.

* CollectionPhase: Aggregate values and route them up
from children to parent.

Centralized Approach:

 Eachnodesendsbackthereplytothecentral node.

* Thecentralnode processesthe datato computethe
aggregate.

In-Network Aggregation Approach:
* Aggregatesare computed within the network.
* Onlynecessaryinformation sent to the parent nodes.

Response

@ @l

In-Network Aggregation

Simple Tiny aggregation:

Mote p receives
request to
aggregate with
expect reply
interval

Synchronizes the

clock and choose

the sender of

message as the

parent.

Forwards the
request with its
own information
and modified

expected reply

Process own
reading with
child’s partial
state record

- | Root
interva *
Level 1
Level 2
Level 3 Tree
Depth
Level 4
Level 5
\/
-
Start of ime End of
Epoch Epoch

Sensing and Processing, Listening/Receivin
. Radio Idle . o 9

|:| Delivery Interval
(Transmitting)

|:| Radio and Processor Idle

Reply to
parent with
the updated
partial state
record

Simulation-Based Evaluation

Simulatorset-up:

Java based simulation with time dividedinto units of epochs.

Doesn’t account for byte-level radio contention or time to send and decode
messages.

Models a parallel executionand the costs of topology maintenance
Three communication models

(a) Simple (b) Random

(c) Realistic

Darker nodes are closer to the roots

Simulation-Based Evaluation

* Costtofloodarequestdownthetreein notconsidered.

Extremely low.
Only an integer
required for the
partial state
record.

Double as
compared to
COUNT/MIN. Two
integers required
for the partial state
record.

80000

, All Sensors

60000

20000

Bytes Transmitted / Ep

In-network vs. Centralized Aggregation
Network Diameter = 50, No Loss

Z

Don’t benefit.

Require more state
/ to compute the

s s

s

L L i’

7,

E==E====1 Any Centralized

[I—1 TAG (In Network),
gregate

N

(

|||

1<
/]

_/

aggregation

T ./ , |
Centralized\(not TAG) %%%@%@éﬂ%%%

AVERAGE

HISTOGRAM \

COUNT DISTINCT

Aggregation Function

MEDIAN

Optimizations

Usingthe shared channel:
 Snooponthenetworkto lookfor missed aggregation request messages.

 Cansnoop atspecified time interval to save power.

Hypothesis testing:

 Theaggregation requestsaresent with a guessvalue.

* Motesonlyrespondiftheirvalues affect the end value.

* Motescanalsosnoop onthe networkto checkif itslocal value can affect the

end value.

Optimizations

Informed guesses can

Steady State Messages/Epoch
Max Query With Hypothesis Testing

lead to significant 2500
performance gain.
S 20001
c
[0
N
£ 1500 t
o
Q.
L
@ 1000 |
(@)}
©
(2}
3
2 500
Snooping can further
improve the perform)
especially in packed 10

networks.

="

-
-
-
-
—-

| No Hy;l)othesisl —l—'

Hypothesis : 50 ----)&---
Hypothesis : 90 -
Hypothesis via Snooping {1
X
o' XK
""""

L7T et e
P S T TS L
27 NI/t e
- A -
. .
P R~ A
Y R sertr

f]

Network Diameter

50

Tolerating loss

Link Quality monitoring:

 Each node monitorsthe quality of the linkto a subset of its neighbors by
trackingthe proportion of packets received from each neighbor.

* |fanodenobservesweaklinktoits parentpand betterlinkto p’,choosesp”’as

its new parent.

Child caching:
* Improve quality of aggregates by remember child’s partial state record for

some number of states.

Usingavailable redundancy:
* UsesthenetworktopologytoImprove quality of aggregates by maintaining
multiple parents and sending part of or whole partial state recordsto each of

them

Tolerating loss
-]

Effect of single loss on variousaggregate functions

MIN insensitive to loss
as several nodes are
at the true minimum.

Average Error vs. Aggregation Function

45 .
AVERAGE ——

41 COUNT +++-)é -

35 MINIMUM -)K
' MEDIAN =]
g ereremremrmreeens >

25 i T :
2f T X..

S

|

N0

Network Diameter

Average Error

MEDIAN and
AVERAGE are
somewhat sensitive to
variation in number
of nodes.

Tolerating loss
-]

Realisticcommunication Significant in number
of participating nodes.

Without caching
TAG or even ¢
centralized

Percentage of Network Involved

aggregation not
highly tolerant

10 15 20 25 30 35 40 45 50
to loss. Network Diameter

No Cache —— 9 Epochs Cache -
5 Epochs Cache ----)<--- 15 Epochs Cache -f=]-

Prototype implementation

Set-up:
 Doesnotinclude optimizations.
* Uses 16 TinyOS Mica motes arranged in a depth four tree.

Count Per Epoch, 16 Nodes (Epoch Duration = 4 Seconds)
1 20 T T T T T T T
Better Quality of TAG
aggregation \ Centralized --------- 50%

1 reduction
communication

COUNT

O 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Epoch

Conclusions

Offers significantreduction in network communication. A node
needs to transmit only once per epoch.

Improvesthe ability to tolerate losses.

Epochsprovidea convenient mechanismto put CPU to sleep.
Offers up to an order of magnitude reductionin bandwidth
consumption.

Simple declarative query interface

Pros & Cons

Pros:

Offersan order of magnitudereductionin network communication.
Provides mechanisms to tolerate losses and improve quality of aggregates.
SQL-like syntaxfor query makes it easy to use.

Cons:

The simulationis too simplified asit doesn’t account for power, CPU and other
important aspects.

The prototype implementation consisted of merely 16 motes.

It is unclear on what the intervalvalueshould be when forwarding the query.
Malicious nodes can corrupt/falsify the aggregates.

Discussion

Evaluation:
* Not a through evaluation.
* Doesn’t consider power consumption, CPU utilizationand
radio contentionin simulated evaluation.
Malicious Nodes can corruptaggregation values.
Affects of stale caches are not considered.
Tree based topology:
* Requireextra communicationto form the tree.
* Failure prone.

