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Background:

• Geo-Replication: Replicas on servers at multiple locations

• Consistency: Strong, Eventual, RMW, Monotonic, etc.

• Latency-Consistency Tradeoff

• Primary Replicas: Writes and Strongly Consistent Reads. 
Secondary Replicas: Intermediary Consistency Reads

• Pileus is a replicated key-value store that allows users to 
define their CAP requirements in terms of SLAs



Brief Overview of Pileus (A “CAP” Cloud):

• SLA: Interface between client and cloud service. 
Wish list. “I want the strongest consistency possible, 
as long as read operations return in under x ms.”   

• Clients specify consistency-based SLAs which 
contain acceptable latencies and a utility 
(preference/weight)

• Monitor replicas of the underlying storage system 

• Route read operations to servers that can best meet 
a given consistency-based SLA

Rank Consistency Latency(ms) Utility

1 Strong 75 1

2 RMW 150 0.8

3 Eventual 750 0.05

Table 1: Example of an SLA 



• Pileus – Shortcomings:
 Pre-defined configuration
 Static

• Key issues:  
Where to place primary and secondary replicas? 
 How many to deploy? 
 Synchronization Period?

• Why not dynamically reconfigure replicas?
 Tuba



Main Contributions of Tuba:

• Dynamically, automatically and periodically reconfigure 
replicas to deliver maximum overall utility to clients

• Does this while respecting SLAs, costs and replication 
constraints

• Client can continue to read and write data while 
reconfiguration is carried out in parallel

• Leverage geo-replication for increased locality and availability
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Fig.1 Configuration Selection



• Greedy Choice: Replicate data in ALL datacenters. BUT,            
there are constraints and cost considerations 

• Ratios Aggregation for clients in the same locations with the 
same SLAs  Reduced computation

• New configuration is computed based on missed subSLAs and 
consistency requirements
 E.g.: missed subSLA for strong consistency –

Add Primary replica near client

• Constraint satisfaction

• Execute reconfiguration operations



Client Execution in Tuba – 2 Modes:

1. Fast Mode: Client has the latest configuration and holds a lease on the 
configuration for (Δ − 𝑑) seconds.

2. Slow Mode: Client suspects that the configuration has changed 

Fig.2 Client Execution Modes

Client can’t read config. 
Because CS has exclusive lock



Tuba Implementation Details:

• Implemented on top of Microsoft Azure Storage (MAS)

• Extension of Pileus (Consistency–based SLAs taken from Pileus)

• Tuba = MAS + multi-site geo-replication + automatic 
reconfiguration

1. How do clients and the CS communicate?

2. How are client operations (Read/ Write Operations) carried out?

3. How are CS reconfiguration operations carried out?



Client-CS Communication:

• Clients use a designated MAS shared 
container to communicate with the CS

• Clients periodically write their observed 
latencies, Hit-Miss Ratios, SLAs and 
Read-Write Ratios which the CS reads

• CS stores latest configuration and the 
RiP (Reconfiguration-in-Progress) flag

• Tuba allows clients to cache the current 
configuration of a tablet called a cview

CSClients

Clients

Configuration

RiP

Latencies

Hit-Miss, R/W 
Ratios + SLAs

Fig.3 Writes to Shared Container
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Client Write Operations (Multi-Primary Write):

Fig.6 Client Multi-Primary Write Operation

Main primary replica 
always holds the truth!
i.e. the latest data.



CS Reconfiguration Operations:

• Adjust synchronization period

• Add Secondary Replica

• Remove Secondary Replica

• Change Primary Replica

• Add Primary Replica



Adjust Synchronization Period (adjust_sync_period):

• Defines how often secondary replicas sync with primary replicas

• ↓ sync period, ↑ freq of sync, ↑ up-to-date secondary replicas, 
↑ chance of hitting intermediary consistency read subSLAs

• Less costly as compared to adding/moving replicas

• No directly observable change for clients



Add/Remove Secondary Replica (add/remove_secondary(𝒔𝒊𝒕𝒆𝒊)):

• E.g.: Consider an online multiplayer game

• Add secondary replica near users                   
(at 𝑠𝑖𝑡𝑒𝑖) during peak times

• Will provide better utility in case of this SLA

• Can remove the secondary replica once user
traffic goes down to reduce cost

Rank Consistency Latency(ms) Utility

1 RMW 40 1

2 Monotonic 90 0.6

3 Eventual 450 0.01

Table 2: SLA of an online multiplayer game
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Fig.7 Change/Add Primary Replica

Change/Add Primary Replica (change/add_primary(𝒔𝒊𝒕𝒆𝒊)):

Increase hits on strongly consistent 
reads based on geographical 
variation of user traffic.



Fault-Tolerance in Tuba:

• Replica Failure:
 Rare. Each site is a collection on 3 Azure servers
 Failed replicas can be removed via reconfiguration operations
 add_primary(𝑠𝑖𝑡𝑒𝑖), 

change_primary(𝑠𝑖𝑡𝑒𝑖),
remove_secondary(𝑠𝑖𝑡𝑒𝑖), 
add_secondary(𝑠𝑖𝑡𝑒𝑖)

• Client Failure:
What if client fails mid-way through a multi-primary write?
 Recovery process used to complete the writes. Reads from the 

main primary replica (the truth).



• CS Failure:
 No direct communication between clients and CS
 If CS fails, clients can still remain in fast mode (provided 

RiP flag is not set)
 Even if RiP flag is on, clients can do R/W in slow mode
 If the RiP flag is on for too long, impatient clients waiting 

too long in slow mode can clear it
 RiP off, so CS aborts reconfigurations (incase it was alive 

and just slow)
 Changes made to RiP flag are conditional on ETags



Experiments:

• Setup:
 3 storage accounts

(SUS, WEU and SEA)
 Active clients are normally

SEA
WEU

SUS

distributed along US West Coast, WEU and Hong Kong
 Simulate the workload of users in different areas at different times
 150 clients at each site (over a 24-hour period)
 Each tablet accessed by 450 distinct clients everyday
 Primary replica in SEA and secondary replica in WEU 
 Global replication factor = 2
 No multi-primary schemes allowed
 YCSB Workload B (95% Reads and 5% Writes)



Rank Consistency Latency(ms) Utility

1 Strong 100 1

2 RMW 100 0.7

3 Eventual 250 0.5

Table 3: SLA Used for Experimentation

• Average Overall Utility (AOU):
 Average utility delivered for all read 

operations from all clients 

• Experiments done with no 
reconfiguration, reconfigurations every 2 
hours, every 4 hours and every 6 hours

• Tuba with no reconfigurations = Pileus 
and AOU for 24-hour period is 0.72

• With constraints max AOU = 0.92

6h 4h 2h

AOU 0.76 0.81 0.85

AOU Improvement % over 
No reconfiguration

5 12 18

AOU Improvement % over 
Max Achievable AOU

20 45 65

Table 4: AOU Observations for Different 
Reconfiguration Periods



Fig.8 Tuba With a 4-Hour 
Reconfiguration Period

Action Configuration
Pri.         Sec.

CS Reconfiguration Operation

1 SEA WEU change_primary(WEU)

2 WEU SEA add_secondary(SUS)
remove_secondary(SEA)

3 WEU SUS change_primary(SUS)

4 SUS WEU add_secondary(SEA)
remove_secondary(WEU)

5 SUS SEA change_primary(SEA)

6 … … ………………………………….

Table 5: Tuba Reconfigurations done

Improvement
Couldn’t predict client 

behavior



Results:

• Improvements in hit percentages for 
strongly consistent reads due to 
reconfiguration

• Reconfiguration done automatically
 No manual intervention – Faster
 No need to stop the system
 Client R/W operations occur in 

parallel to the reconfiguration 
operations

34%

33%

33%

No 
Reconfiguration

Eventual

Strong

RMW

21%

33%

46%

Every 6 Hours

17%

49%

34%

Every 4 Hours

11%

54%

35%

Every 2 Hours

Fig.9 Hit Percentage of SubSLAs



Pros/Advantages of Using Tuba:
1. Dynamically change configurations to handle change in client requests

2. Change configurations on a per-tablet basis

3. Client R/W operations can be executed in parallel with reconfiguration

4. Easily extensible to existing systems that are already using MAS/Pileus

5. Provides default constraints to avoid aggressive replication

6. Reduced computation using hit-miss ratio aggregation

7. Good fault-tolerance (recovery processes, client RiP flag over rides, etc.)



Cons/Future Work:
1. Scalability Issues since configuration generator generates all possible 

configurations. At 10,000 clients and 7 storage sites  170 seconds

2. Pre-pruning instead of post-pruning based on constraint satisfaction

3. Make CS proactive instead of reactive. Make reconfigurations by predicting 
future poor utility Machine learning methods

4. For multi-primary operations, the first primary node is the main primary. 
Choose one so as to reduce overall latency?

5. Clients keep polling for new configuration. Use Async. messages instead?



Conclusion:
• Tuba is a geo-replicated key-value store that can dynamically select optimal 

configurations of replicas based on consistency-based SLAs, constraints, costs 
and changing client demands

• Successfully uses utility/cost to decide the optimal configuration

• Carries out automatic reconfiguration in parallel with client R/W operations

• Tuba is extensible: built on top of Microsoft Azure Storage and extends Pileus

• Provides increase in consistency. E.g.: With 2-hour reconfigurations, reads 
that returned strongly consistent data increased by 63%. Overall utility went 
up by 18%.



Piazza Questions/Discussion Points:
• Are there times when system blocks? 
While adding/changing primary replica, no writes from when CS takes 

lease on configuration till new configuration is set up 
 But this duration is short (1 RTT from CS to config blob + safe threshold)

• No experiments to measure reconfiguration load & failure cases

• No SLA validation mechanisms. No constraints  default constraints

• Security issues 

• Client failure Multiple recovery processes are wasteful



Thanks for listening!

Questions?


