A Self-Configurable Geo-Replicated
Cloud Storage System

BY: MASOUD SAEIDA ARDEKANI AND
DOUGLAS B. TERRY

PRESENTATION BY: CHINMAY KULKARNI

Background:

* Geo-Replication: Replicas on servers at multiple locations

e Consistency: Strong, Eventual, RMW, Monotonic, etc.

e Latency-Consistency Tradeoff EﬂNSlST[NEY
* Primary Replicas: Writes and Strongly Consistent Reads. |s 0

Secondary Replicas: Intermediary Consistency Reads

* Pileus is a replicated key-value store that allows users to
define their CAP requirements in terms of SLAs

Brief Overview of Pileus (A “CAP” Cloud):

* SLA: Interface between client and cloud service.
Wish list. “I want the strongest consistency possible,
as long as read operations return in under x ms.”

* Clients specify consistency-based SLAs which Rank | Consistency | Latency(ms) | Utility

tai t bl | t . d t.l.t 1 Strong 75 1
contaln accep a. e Iatencies anad a utlity 5 RMW 150 08
(preference/welght) 3 Eventual 750 0.05

Table 1: Example of an SLA
* Monitor replicas of the underlying storage system

* Route read operations to servers that can best meet
a given consistency-based SLA

* Pileus — Shortcomings:

— Pre-defined configuration
—> Static

* Key issues:
- Where to place primary and secondary replicas?
- How many to deploy?
— Synchronization Period?

* Why not dynamically reconfigure replicas?
— Tuba

Main Contributions of Tuba:

 Dynamically, automatically and periodically reconfigure
replicas to deliver maximum overall utility to clients

* Does this while respecting SLAs, costs and replication
constraints

e (Client can continue to read and write data while
reconfiguration is carried out in parallel

* Leverage geo-replication for increased locality and availability

Configuration Selection: Configuration

Generator

SLAS ey~)
Observed Latencies =———f Configuration Configuration
CLIENTS Hit/MiSS Ratios =——f Service (CS) Utility
R/W Ratios ey Y maxl Cost]
4 4
Constraints: Costs:
* Replication Factor « Data Storage
* Location * R/W Operations
* Sync. Period * Syncing

* Costin$ * Cost of reconfiguration

* Greedy Choice: Replicate data in ALL datacenters. BUT,
there are constraints and cost considerations

* Ratios Aggregation for clients in the same locations with the
same SLAs = Reduced computation

 New configuration is computed based on missed subSLAs and
consistency requirements
— E.g.: missed subSLA for strong consistency —
Add Primary replica near client

e Constraint satisfaction

* Execute reconfiguration operations

: .. Client can’t read config.
Client Execution in Tuba — 2 Modes: Because CS has exclusive lock

1. Fast Mode: Client has the latest configuration and holds|d lease on the
configuration for (A — d) seconds.

2. Slow Mode: Client suspects that the configuration has changed
Configuration N

Service : :] : | | i
i % 1 : % % | . % :
@ E: /| E- g 5/ & >
4] , <) i e < o/ | O 5
I 1 ! l | 1 |
Client ! : : '
|< d }: : I l | : :
: ‘ 1 , 1 ' | : :
: .ﬂ. : : ' ' I 1 :
: : : I I | Fﬁ I
E |] E ' L e
] 1 : I 1 | i ﬂ |
| | 3 : i l | i
Slow Fast *Slow Fast Slow Fast Slow Fast

Fig.2 Client Execution Modes

Tuba Implementation Details:

 Implemented on top of Microsoft Azure Storage (MAS)
* Extension of Pileus (Consistency—based SLAs taken from Pileus)

 Tuba = MAS + multi-site geo-replication + automatic
reconfiguration

1. How do clients and the CS communicate?
2. How are client operations (Read/ Write Operations) carried out?

3. How are CS reconfiguration operations carried out?

Client-CS Communication:

Clients use a designated MAS shared
container to communicate with the CS

Clients periodically write their observed
latencies, Hit-Miss Ratios, SLAs and
Read-Write Ratios which the CS reads

CS stores latest configuration and the
RiP (Reconfiguration-in-Progress) flag

Tuba allows clients to cache the current
configuration of a tablet called a cview

Clients

Latencies. Configuration
Hlt-t%(ss, R/W =
Ratios + SLAs

CIients

Fig.3 Writes to Shared Container

Client Read Operations:

Send
request to Is client in
replica. Get fast mode?

reply Return read
data to
application

Select
replica

Strongly
consistent
read?

Check: Is
replica still
primary?

Abort &
retr

Fig.4 Client Read Operation

Client Write Operations (Single-Primary Write):

Fast mode
interval > Write
operation time

Slow
mode

Write to

. primary
Undo Write replica. Get

& Abort response

Yes

Client
still in
fast

ode?

Get lease Write to
on config. primary
blob replica

Primary
replica
changed?

No Yes

Fig.5 Client Single-Primary Write Operation

Client Write Operations (Multi-Primary Write):

Add WiP flag to
blob’s metadata
blob at main pnmary
replica

Add WiP flag to
blob’s metadata
at non-main

Get lease
on config.

Etagl

Changed
?

primary replicas

No
Main primary replica Write to blob

always holds the truth! on main
i.e. the latest data. primary site

ETagl ETags

Clear WiP flag Clear WiP flag

. . Write to blob
at main at non-main

on other
primary sites

Etags

Ch d
a:ge Yes

primary primary
replica replicas

Fig.6 Client Multi-Primary Write Operation

CS Reconfiguration Operations:

* Adjust synchronization period
 Add Secondary Replica

* Remove Secondary Replica
 Change Primary Replica

 Add Primary Replica

Adjust Synchronization Period (adjust_sync period):

* Defines how often secondary replicas sync with primary replicas

e { sync period, T freq of sync, I* up-to-date secondary replicas,
I chance of hitting intermediary consistency read subSLAs

* Less costly as compared to adding/moving replicas -

 No directly observable change for clients -.

Add/Remove Secondary Replica (add/remove_secondary(site;)):

 E.g.: Consider an online multiplayer game Rank | Consistency | Latency(ms) | Utility
1 RMW 40 1
. 2 M toni 90 0.6
* Add secondary replica near users onoTme
3 Eventual 450 0.01

(at site;) during peak times

Table 2: SLA of an online multiplayer game

* Will provide better utility in case of this SLA

 Canremove the secondary replica once user
traffic goes down to reduce cost

Change/Add Primary Replica (change/add_primary(site;)):

Wait A seconds Break all client
replica Yes RVELGHEJIE! : so that all leases and get
: config. blob .
exists at WRITE_ONLY clients go to lease on
. o metadata :
site;? 3 slow mode config. blob

S d
econdary Set RiP flag in

No Increase hits on strongly consistent .
: . Wait for safe
Create replica at reads based on geographical threshold =

variation of user traffic. max allowed
lease time

site; and sync with
primary replica

Make site; the solo
primary replica

Install
temporary
config.

Remove RiP

(if change operation),
or add to list of primary
replicas (if add)

D
ONe HET

Fig.7 Change/Add Primary Replica

Fault-Tolerance in Tuba:

* Replica Failure:

—> Rare. Each site is a collection on 3 Azure servers

—> Failed replicas can be removed via reconfiguration operations
- add_primary(site;),

change_primary(site;),
remove_secondary(site;),
add_secondary(site;)

e (Client Failure:

- What if client fails mid-way through a multi-primary write?

— Recovery process used to complete the writes. Reads from the
main primary replica (the truth).

(S Failure:

- No direct communication between clients and CS

= If CS fails, clients can still remain in fast mode (provided
RiP flag is not set)

— Even if RiP flag is on, clients can do R/W in slow mode

= If the RiP flag is on for too long, impatient clients waiting
too long in slow mode can clear it

— RiP off, so CS aborts reconfigurations (incase it was alive
and just slow)

— Changes made to RiP flag are conditional on ETags

Experiments:

* Setup:
— 3 storage accounts
(SUS, WEU and SEA)

— Active clients are normally
distributed along US West Coast, WEU and Hong Kong

- Simulate the workload of users in different areas at different times
— 150 clients at each site (over a 24-hour period)

— Each tablet accessed by 450 distinct clients everyday

— Primary replica in SEA and secondary replica in WEU

— Global replication factor = 2

- No multi-primary schemes allowed

— YCSB Workload B (95% Reads and 5% Writes)

° Average Overall Ut|||ty (AOU) Rank | Consistency | Latency(ms) | Utility
- Average utility delivered for all read 1 |>trong 100 L
. . 2 RMW 100 0.7
operations from all clients
3 Eventual 250 0.5

. . Table 3: SLA Used for Experimentation
 Experiments done with no

reconfiguration, reconfigurations every 2

hours, every 4 hours and every 6 hours o Tan Tar
AOU 0.76 | 0.81 | 0.85
 Tuba with no reconfigurations = Pileus AOU Improvement % over | 5 |12 |18
and AOU for 24-hour period is 0.72 No reconfiguration
AOU Improvement % over | 20 45 65
Max Achievable AOU

e With constraints max AOU =0.92

Table 4: AOU Observations for Different
Reconfiguration Periods

—No-Reconfiguration -*-Every 4 hour

Action | Configuration | CS Reconfiguration Operation
Pri. Sec.
1 SEA | WEU | change _primary(WEU)
_ 2 WEU | SEA add_secondary(SUS)
remove_secondary(SEA
50'4 Improvement Couldn’ dict cli — V(SEA)
> 03 ouldn’t predict client| 3 WEU |SUS | change primary(SUS)
5 .
0.2 behavior 4 SUS | WEU | add _secondary(SEA)
D‘é remove_secondary(WEU)
5 SUS | SEA change _primary(SEA)
9 11 13 15 17 19 21 23 1 3 5 7 .

UTC TIME
Table 5: Tuba Reconfigurations done

Fig.8 Tuba With a 4-Hour
Reconfiguration Period

Results: No

Reconfiguration

Every 6 Hours

* |Improvements in hit percentages for
strongly consistent reads due to 33% || 30% Y
reconfiguration m a strong

H RMW

 Reconfiguration done automatically
- No manual intervention — Faster Every 4 Hours Every 2 Hours
- No need to stop the system
— Client R/W operations occur in
parallel to the reconfiguration
operations

Fig.9 Hit Percentage of SubSLAs

Pros/Advantages of Using Tuba:

1.

Dynamically change configurations to handle change in client requests
Change configurations on a per-tablet basis

Client R/W operations can be executed in parallel with reconfiguration
Easily extensible to existing systems that are already using MAS/Pileus
Provides default constraints to avoid aggressive replication

Reduced computation using hit-miss ratio aggregation

Good fault-tolerance (recovery processes, client RiP flag over rides, etc.)

Cons/Future Work:

1.

Scalability Issues since configuration generator generates all possible
configurations. At 10,000 clients and 7 storage sites = 170 seconds

Pre-pruning instead of post-pruning based on constraint satisfaction

Make CS proactive instead of reactive. Make reconfigurations by predicting
future poor utility 2 Machine learning methods

For multi-primary operations, the first primary node is the main primary.
Choose one so as to reduce overall latency?

Clients keep polling for new configuration. Use Async. messages instead?

Conclusion:

Tuba is a geo-replicated key-value store that can dynamically select optimal
configurations of replicas based on consistency-based SLAs, constraints, costs
and changing client demands

Successfully uses utility/cost to decide the optimal configuration

Carries out automatic reconfiguration in parallel with client R/W operations
Tuba is extensible: built on top of Microsoft Azure Storage and extends Pileus
Provides increase in consistency. E.g.: With 2-hour reconfigurations, reads

that returned strongly consistent data increased by 63%. Overall utility went
up by 18%.

Piazza Questions/Discussion Points:
* Are there times when system blocks?
- While adding/changing primary replica, no writes from when CS takes
lease on configuration till new configuration is set up
— But this duration is short (1 RTT from CS to config blob + safe threshold)
* No experiments to measure reconfiguration load & failure cases
* No SLA validation mechanisms. No constraints = default constraints

* Security issues

* Client failure = Multiple recovery processes are wasteful

Thanks for listening!

Questions?

