
A Self-Configurable Geo-Replicated
Cloud Storage System
BY: MASOUD SAEIDA ARDEKANI AND

DOUGLAS B. TERRY

PRESENTATION BY: CHINMAY KULKARNI

Background:

• Geo-Replication: Replicas on servers at multiple locations

• Consistency: Strong, Eventual, RMW, Monotonic, etc.

• Latency-Consistency Tradeoff

• Primary Replicas: Writes and Strongly Consistent Reads.
Secondary Replicas: Intermediary Consistency Reads

• Pileus is a replicated key-value store that allows users to
define their CAP requirements in terms of SLAs

Brief Overview of Pileus (A “CAP” Cloud):

• SLA: Interface between client and cloud service.
Wish list. “I want the strongest consistency possible,
as long as read operations return in under x ms.”

• Clients specify consistency-based SLAs which
contain acceptable latencies and a utility
(preference/weight)

• Monitor replicas of the underlying storage system

• Route read operations to servers that can best meet
a given consistency-based SLA

Rank Consistency Latency(ms) Utility

1 Strong 75 1

2 RMW 150 0.8

3 Eventual 750 0.05

Table 1: Example of an SLA

• Pileus – Shortcomings:
 Pre-defined configuration
 Static

• Key issues:
Where to place primary and secondary replicas?
 How many to deploy?
 Synchronization Period?

• Why not dynamically reconfigure replicas?
 Tuba

Main Contributions of Tuba:

• Dynamically, automatically and periodically reconfigure
replicas to deliver maximum overall utility to clients

• Does this while respecting SLAs, costs and replication
constraints

• Client can continue to read and write data while
reconfiguration is carried out in parallel

• Leverage geo-replication for increased locality and availability

Configuration Selection:

Configuration
Service (CS)

Configuration
Generator

SLAs
Observed Latencies

Hit/Miss Ratios
R/W Ratios

Constraints:
• Replication Factor
• Location
• Sync. Period
• Cost in $

Costs:
• Data Storage
• R/W Operations
• Syncing
• Cost of reconfiguration

Configuration

max
𝑈𝑡𝑖𝑙𝑖𝑡𝑦

𝐶𝑜𝑠𝑡

Fig.1 Configuration Selection

• Greedy Choice: Replicate data in ALL datacenters. BUT,
there are constraints and cost considerations

• Ratios Aggregation for clients in the same locations with the
same SLAs  Reduced computation

• New configuration is computed based on missed subSLAs and
consistency requirements
 E.g.: missed subSLA for strong consistency –

Add Primary replica near client

• Constraint satisfaction

• Execute reconfiguration operations

Client Execution in Tuba – 2 Modes:

1. Fast Mode: Client has the latest configuration and holds a lease on the
configuration for (Δ − 𝑑) seconds.

2. Slow Mode: Client suspects that the configuration has changed

Fig.2 Client Execution Modes

Client can’t read config.
Because CS has exclusive lock

Tuba Implementation Details:

• Implemented on top of Microsoft Azure Storage (MAS)

• Extension of Pileus (Consistency–based SLAs taken from Pileus)

• Tuba = MAS + multi-site geo-replication + automatic
reconfiguration

1. How do clients and the CS communicate?

2. How are client operations (Read/ Write Operations) carried out?

3. How are CS reconfiguration operations carried out?

Client-CS Communication:

• Clients use a designated MAS shared
container to communicate with the CS

• Clients periodically write their observed
latencies, Hit-Miss Ratios, SLAs and
Read-Write Ratios which the CS reads

• CS stores latest configuration and the
RiP (Reconfiguration-in-Progress) flag

• Tuba allows clients to cache the current
configuration of a tablet called a cview

CSClients

Clients

Configuration

RiP

Latencies

Hit-Miss, R/W
Ratios + SLAs

Fig.3 Writes to Shared Container

Return read
data to

application

Select
replica

Send
request to

replica. Get
reply

Is client in
fast mode?

Yes

Strongly
consistent

read?

No

No

Check: Is
replica still
primary?

Yes

YesNoAbort &
retry

Client Read Operations:

Fig.4 Client Read Operation

Data
Fast mode

interval > Write
operation time

Refresh
cview

No

RiP
set?

Yes Yes

Write to
primary

replica. Get
response

No

Client
still in

fast
mode?

Primary
replica

changed?
No

Undo Write
& Abort

Yes

Done
YesNo

Slow
mode

Client Write Operations (Single-Primary Write):

Fast
mode

Fig.5 Client Single-Primary Write Operation

Slow
mode

Get lease
on config.

blob

Write to
primary
replica

Done

Get lease
on config.

blob

Add WiP flag to
blob’s metadata
at main primary

replica

ETag1

Add WiP flag to
blob’s metadata

at non-main
primary replicas

ETags

Etag1
Changed

?

Write to blob
on main

primary site

No

Yes
Abort

Etags
Changed

?

Write to blob
on other

primary sites
YesNo

Clear WiP flag
at non-main

primary
replicas

Clear WiP flag
at main
primary
replica

Done

Client Write Operations (Multi-Primary Write):

Fig.6 Client Multi-Primary Write Operation

Main primary replica
always holds the truth!
i.e. the latest data.

CS Reconfiguration Operations:

• Adjust synchronization period

• Add Secondary Replica

• Remove Secondary Replica

• Change Primary Replica

• Add Primary Replica

Adjust Synchronization Period (adjust_sync_period):

• Defines how often secondary replicas sync with primary replicas

• ↓ sync period, ↑ freq of sync, ↑ up-to-date secondary replicas,
↑ chance of hitting intermediary consistency read subSLAs

• Less costly as compared to adding/moving replicas

• No directly observable change for clients

Add/Remove Secondary Replica (add/remove_secondary(𝒔𝒊𝒕𝒆𝒊)):

• E.g.: Consider an online multiplayer game

• Add secondary replica near users
(at 𝑠𝑖𝑡𝑒𝑖) during peak times

• Will provide better utility in case of this SLA

• Can remove the secondary replica once user
traffic goes down to reduce cost

Rank Consistency Latency(ms) Utility

1 RMW 40 1

2 Monotonic 90 0.6

3 Eventual 450 0.01

Table 2: SLA of an online multiplayer game

Secondary
replica

exists at
𝑠𝑖𝑡𝑒𝑖?

Yes

No

Create replica at
𝑠𝑖𝑡𝑒𝑖 and sync with

primary replica

Make replica
WRITE_ONLY

Set RiP flag in
config. blob
metadata

Wait Δ seconds
so that all

clients go to
slow mode

Break all client
leases and get

lease on
config. blob

Wait for safe
threshold =

max allowed
lease time

Install
temporary

config.

Remove RiP
flag

Make 𝑠𝑖𝑡𝑒𝑖 the solo
primary replica

(if change operation),
or add to list of primary

replicas (if add)

Done

Fig.7 Change/Add Primary Replica

Change/Add Primary Replica (change/add_primary(𝒔𝒊𝒕𝒆𝒊)):

Increase hits on strongly consistent
reads based on geographical
variation of user traffic.

Fault-Tolerance in Tuba:

• Replica Failure:
 Rare. Each site is a collection on 3 Azure servers
 Failed replicas can be removed via reconfiguration operations
 add_primary(𝑠𝑖𝑡𝑒𝑖),

change_primary(𝑠𝑖𝑡𝑒𝑖),
remove_secondary(𝑠𝑖𝑡𝑒𝑖),
add_secondary(𝑠𝑖𝑡𝑒𝑖)

• Client Failure:
What if client fails mid-way through a multi-primary write?
 Recovery process used to complete the writes. Reads from the

main primary replica (the truth).

• CS Failure:
 No direct communication between clients and CS
 If CS fails, clients can still remain in fast mode (provided

RiP flag is not set)
 Even if RiP flag is on, clients can do R/W in slow mode
 If the RiP flag is on for too long, impatient clients waiting

too long in slow mode can clear it
 RiP off, so CS aborts reconfigurations (incase it was alive

and just slow)
 Changes made to RiP flag are conditional on ETags

Experiments:

• Setup:
 3 storage accounts

(SUS, WEU and SEA)
 Active clients are normally

SEA
WEU

SUS

distributed along US West Coast, WEU and Hong Kong
 Simulate the workload of users in different areas at different times
 150 clients at each site (over a 24-hour period)
 Each tablet accessed by 450 distinct clients everyday
 Primary replica in SEA and secondary replica in WEU
 Global replication factor = 2
 No multi-primary schemes allowed
 YCSB Workload B (95% Reads and 5% Writes)

Rank Consistency Latency(ms) Utility

1 Strong 100 1

2 RMW 100 0.7

3 Eventual 250 0.5

Table 3: SLA Used for Experimentation

• Average Overall Utility (AOU):
 Average utility delivered for all read

operations from all clients

• Experiments done with no
reconfiguration, reconfigurations every 2
hours, every 4 hours and every 6 hours

• Tuba with no reconfigurations = Pileus
and AOU for 24-hour period is 0.72

• With constraints max AOU = 0.92

6h 4h 2h

AOU 0.76 0.81 0.85

AOU Improvement % over
No reconfiguration

5 12 18

AOU Improvement % over
Max Achievable AOU

20 45 65

Table 4: AOU Observations for Different
Reconfiguration Periods

Fig.8 Tuba With a 4-Hour
Reconfiguration Period

Action Configuration
Pri. Sec.

CS Reconfiguration Operation

1 SEA WEU change_primary(WEU)

2 WEU SEA add_secondary(SUS)
remove_secondary(SEA)

3 WEU SUS change_primary(SUS)

4 SUS WEU add_secondary(SEA)
remove_secondary(WEU)

5 SUS SEA change_primary(SEA)

6 … … ………………………………….

Table 5: Tuba Reconfigurations done

Improvement
Couldn’t predict client

behavior

Results:

• Improvements in hit percentages for
strongly consistent reads due to
reconfiguration

• Reconfiguration done automatically
 No manual intervention – Faster
 No need to stop the system
 Client R/W operations occur in

parallel to the reconfiguration
operations

34%

33%

33%

No
Reconfiguration

Eventual

Strong

RMW

21%

33%

46%

Every 6 Hours

17%

49%

34%

Every 4 Hours

11%

54%

35%

Every 2 Hours

Fig.9 Hit Percentage of SubSLAs

Pros/Advantages of Using Tuba:
1. Dynamically change configurations to handle change in client requests

2. Change configurations on a per-tablet basis

3. Client R/W operations can be executed in parallel with reconfiguration

4. Easily extensible to existing systems that are already using MAS/Pileus

5. Provides default constraints to avoid aggressive replication

6. Reduced computation using hit-miss ratio aggregation

7. Good fault-tolerance (recovery processes, client RiP flag over rides, etc.)

Cons/Future Work:
1. Scalability Issues since configuration generator generates all possible

configurations. At 10,000 clients and 7 storage sites  170 seconds

2. Pre-pruning instead of post-pruning based on constraint satisfaction

3. Make CS proactive instead of reactive. Make reconfigurations by predicting
future poor utility Machine learning methods

4. For multi-primary operations, the first primary node is the main primary.
Choose one so as to reduce overall latency?

5. Clients keep polling for new configuration. Use Async. messages instead?

Conclusion:
• Tuba is a geo-replicated key-value store that can dynamically select optimal

configurations of replicas based on consistency-based SLAs, constraints, costs
and changing client demands

• Successfully uses utility/cost to decide the optimal configuration

• Carries out automatic reconfiguration in parallel with client R/W operations

• Tuba is extensible: built on top of Microsoft Azure Storage and extends Pileus

• Provides increase in consistency. E.g.: With 2-hour reconfigurations, reads
that returned strongly consistent data increased by 63%. Overall utility went
up by 18%.

Piazza Questions/Discussion Points:
• Are there times when system blocks?
While adding/changing primary replica, no writes from when CS takes

lease on configuration till new configuration is set up
 But this duration is short (1 RTT from CS to config blob + safe threshold)

• No experiments to measure reconfiguration load & failure cases

• No SLA validation mechanisms. No constraints  default constraints

• Security issues

• Client failure Multiple recovery processes are wasteful

Thanks for listening!

Questions?

