
APACHE STORM

A scalable distributed & fault tolerant real time
computation system
(Free & Open Source)

Shyam Rajendran 17-Feb-15

Agenda
• History & the whys
• Concept & Architecture
• Features
• Demo!

History
• Before the Storm

Queues

Workers

Analyzing Real Time Data (old)

http://www.slideshare.net/nathanmarz/storm-distributed-and-
faulttolerant-realtime-computation

History

• Problems?

•  Cumbersome to build applications (manual
+ tedious + serialize/deserialize message)

•  Brittle (No fault tolerance)
•  Pain to scale - same application logic

spread across many workers, deployed
separately

 http://nathanmarz.com.

• Hadoop ?
•  For parallel batch processing : No Hacks for realtime
•  Map/Reduce is built to leverage data localization on HDFS to

distribute computational jobs.
•  Works on big data.

Why not as one self-contained application?

Enter the Storm!

• BackType (Acquired by Twitter)

Nathan Marz* + Clojure

•  Storm !
–  Stream process data in realtime with no

latency!
–  Generates big data!

Features
• Simple programming model

•  Topology - Spouts – Bolts

• Programming language agnostic
•  (Clojure, Java, Ruby, Python default)

•  Fault-tolerant
•  Horizontally scalable

•  Ex: 1,000,000 messages per second on
a 10 node cluster

•  Guaranteed message processing
•  Fast : Uses zeromq message queue
•  Local Mode : Easy unit testing

Concepts – Steam and Spouts
•  Stream

•  Unbounded sequence of tuples (storm data model)
•  <key, value(s)> pair ex. <“UIUC”, 5>

•  Spouts
•  Source of streams : Twitterhose API
•  Stream of tweets or some crawler

Concept - Bolts
•  Bolts

•  Process (one or more) input stream and produce new
streams

•  Functions
•  Filter, Join, Apply/Transform etc
•  Parallelize to make it fast! – multiple processes constitute a

bolt

Concepts – Topology & Grouping
•  Topology

•  Graph of computation – can
have cycles

•  Network of Spouts and Bolts
•  Spouts and bolts execute as

many tasks across the cluster

•  Grouping
•  How to send tuples between the

components / tasks?

Concepts – Grouping
•  Shuffle Grouping

•  Distribute streams “randomly” to
bolt’s tasks

•  Fields Grouping
•  Group a stream by a subset of its fields

•  All Grouping
•  All tasks of bolt receive all input tuples
•  Useful for joins

•  Global Grouping
•  Pick task with lowers id

Zookeeper
• Open source server for highly reliable distributed

coordination.
• As a replicated synchronization service with eventual

consistency.
• Features

•  Robust
•  Persistent data replicated across multiple nodes

•  Master node for writes
•  Concurrent reads
•  Comprises a tree of znodes, - entities roughly representing file

system nodes.
•  Use only for saving small configuration data.

Cluster

Features
•  Simple programming model

•  Topology - Spouts – Bolts

•  Programming language agnostic
•  (Clojure, Java, Ruby, Python default)

•  Guaranteed message processing
•  Fault-tolerant

•  Horizontally scalable

•  Ex: 1,000,000 messages per second on a 10 node cluster

•  Fast : Uses zeromq message queue

•  Local Mode : Easy unit testing

Guranteed Message Processing
•  When is a message “Fully Proceed” ?

"fully processed" when the
tuple tree has been exhausted
and every message in the tree
has been processed

A tuple is considered failed
when its tree of messages fails
to be fully processed within a
specified timeout.

•  Storms’s reliability API ?
•  Tell storm whenever you create a new link in the tree of tuples
•  Tell storm when you have finished processing individual tuple

Fault Tolerance APIS
• Emit(tuple, output)

•  Emits an output tuple, perhaps anchored on an input tuple (first
argument)

• Ack(tuple)
•  Acknowledge that you (bolt) finished processing a tuple

• Fail(tuple)
•  Immediately fail the spout tuple at the root of tuple topology if

there is an exception from the database, etc.
• Must remember to ack/fail each tuple

•  Each tuple consumes memory. Failure to do so results in
memory leaks.

Fault-tolerant
•  Anchoring

•  Specify link in the tuple tree.
(anchor an output to one or
more input tuples.)

•  At the time of emitting new
tuple

•  Replay one or more tuples.

"acker" tasks
•  Track DAG of tuples for every

spout
•  Every tuple (spout/bolt) given

a random 64 bit id
•  Every tuple knows the ids of all

spout tuples for which it exits.

How?
•  Every individual tuple must be acked.
•  If not task will run out of memory!
•  Filter Bolts ack at the end of execution
•  Join/Aggregation bolts use multi ack .

What’s the catch?

Failure Handling
• A tuple isn't acked because the task died:

•  Spout tuple ids at the root of the trees for the failed tuple will time
out and be replayed.

• Acker task dies:
•  All the spout tuples the acker was tracking will time out and be

replayed.

• Spout task dies:
•  The source that the spout talks to is responsible for replaying the

messages.
•  For example, queues like Kestrel and RabbitMQ will place all pending

messages back on the queue when a client disconnects.

Storm Genius
• Major breakthrough : Tracking algorithm
• Storm uses mod hashing to map a spout tuple id to an

acker task.
• Acker task:

•  Stores a map from a spout tuple id to a pair of values.
•  Task id that created the spout tuple
•  Second value is 64bit number : Ack Val

•  XOR all tuple ids that have been created/acked in the tree.
•  Tuple tree completed when Ack Val = 0

•  Configuring Reliability
•  Config.TOPOLOGY_ACKERS to 0.
•  you can emit them as unanchored tuples

Exactly Once Semantics ?
• Trident

•  High level abstraction for realtime computing on top of storm
•  Stateful stream processing with low latency distributed quering
•  Provides exactly-once semantics (avoid over counting)

How can we do ?
Store the transaction id with the count

in the database as an atomic value

https://storm.apache.org/documentation/Trident-state

Exactly Once Mechanism
Lets take a scenario

•  Count aggregation of your stream
•  Store running count in database. Increment count after processing tuple.
•  Failure!

Design

•  Tuples are processed as small batches.
•  Each batch of tuples is given a unique id called the "transaction id" (txid).
•  If the batch is replayed, it is given the exact same txid.
•  State updates are ordered among batches.

Exactly Once Mechanism (contd.)

man => [count=3, txid=1]
dog => [count=4, txid=3]
apple => [count=10, txid=2]

•  Processing txid = 3
•  Database state

•  If they're the same : SKIP
(Strong Ordering)

•  If they're different,
 you increment the count.

Design

["man"]
["man"]
["dog"]

man => [count=5, txid=3]
dog => [count=4, txid=3]
apple => [count=10, txid=2]

https://storm.apache.org/documentation/Trident-state

Improvements and Future Work
• Lax security policies
• Performance and scalability improvements

•  Presently with just 20 nodes SLAs that require processing more
than a million records per second is achieved.

• High Availability (HA) Nimbus
•  Though presently not a single point of failure, it does affect degrade

functionality.

• Enhanced tooling and language support

DEMO

Topology

Tweet Spout

Parse
Tweet Bolt Count Bolt Intermediate

Ranker Bolt

Total
Ranker

Bolt

Report
Bolt

Downloads
•  Download the binaries, Install and Configure -

ZooKeeper.
•  - Download the code, build, install - zeromq and jzmq.
•  - Download the binaries, Install and Configure – Storm.

References
•  https://storm.apache.org/
•  http://www.slideshare.net/nathanmarz/storm-distributed-and-

faulttolerant-realtime-computation
•  http://hortonworks.com/blog/the-future-of-apache-storm/
•  http://zeromq.org/intro:read-the-manual
•  http://www.thecloudavenue.com/2013/11/

InstallingAndConfiguringStormOnUbuntu.html
•  https://storm.apache.org/documentation/Setting-up-a-Storm-

cluster.html

