
Extracting More
Concurrency from
Distributed Transactions
AU T H O R ED BY S H UA I M U, YA N G C H U I , Y E N G Z H A N G , W YAT T L LOY D A N D J I N YA N G L I

P R ES E N T ED BY DA RS H A N VA L I A

Introduction
oEveryone wants their system to scale while supporting transactions

Transactions require strict serializability
◦ Guaranteed by concurrency control

oWhat if there were no concurrency control in a system, like say shopping at Amazon?
◦ Amazon might charge you twice

◦ Amazon might deliver the same item twice for the price of one

oPopular protocols providing concurrency control:
o Two Phase Locking (2PL)

o Optimistic Concurrency Control (OCC)

Use Case
oCombo offer for “Imitation Game” and “Theory of Everything”

oStock for Imitation Game in Shard 1, Stock for Theory of Everything in Shard 2

oTwo users buying both at same time

IG = 5 left
TOE = 3 left

Shard 1 Shard 2

Item_table

Two Phase Locking
SHARD 1 SHARD 2

T1 Locks IG
T2 wants IG, blocked

T1 decrements IG stock
T1 Commits, unlocks IG

T2 locks IG
T2 decrements IG stock
T2 commits, unlocks IG

T1 Locks TOE
T2 wants TOE, blocked

T1 decrements TOE stock
T1 Commits, unlocks TOE

T2 locks TOE
T2 decrements TOE stock
T2 commits, unlocks TOE

T2 blocked T2 blocked

Optimistic Concurrency Control
SHARD 1 SHARD 2

T1 arrives, records timestamp

T2 arrives, records timestamp

T1 modifies value

T2 modifies value

T1 validates, inconsistency found, ABORT

T2 validates, inconsistency found, ABORT

T1 arrives, records timestamp

T2 arrives, records timestamp

T1 modifies value

T2 modifies value

T1 validates, inconsistency found, ABORT

T2 validates, inconsistency found, ABORT

Introducing ROCOCO
oROCOCO - Reordering Conflicts for Concurrency

oAims to extract more concurrency during contention
oWithout aborting (unlike OCC)

oWithout blocking (unlike 2PC)

oBasic Idea:
o Break transactions into atomic pieces

o Identify dependencies of various transaction pieces across different servers

o Reorder the pieces deterministically and then execute

Dep Dep

Introduction to ROCOCO

TOE

IG

TOE

IG

TOE IG

T1
T2

Dep Dep

Dep Dep

Start Phase

TOE

IG

TOE

IG

TOE IG

T1
T2

TOE

Dep Dep

T1

T1

Dep Dep

Start Phase

TOE

IG

TOE

IG

TOE IG

T1
T2

TOE

TOE

Dep Dep

T1

T2

T1

Dep Dep

Start Phase

TOE

IG

TOE

IG

TOE IG

T1
T2

TOE

TOE

Dep Dep

T1

T2

T1

T1

T2

Dep Dep

Start Phase

TOE

IG

TOE

IG

TOE IG

T1
T2

TOE IG

TOE

Dep Dep

T1

T2

T2

T1

T1

T2

Dep Dep

Start phase

TOE

IG

TOE

IG

TOE IG

T1
T2

TOE IG

TOE IG

Dep Dep

T1

T2

T2

T1

T1

T1

T2

Dep Dep

Start phase

TOE

IG

TOE

IG

TOE IG

T1
T2

TOE IG

TOE IG

Dep Dep

T1

T2

T2

T1

T2

T1

T1

T2

Dep Dep

Commit phase

TOE

IG

TOE

IG

TOE IG

T1
T2

TOE IG

TOE IG

Dep Dep

T1

T2

T2

T1

T2

T1

T1

T2

T2

T1

T2

T1

Dep Dep

Commit phase

TOE

IG

TOE

IG

TOE IG

T1
T2

TOE IG

TOE IG

Dep Dep

T1

T2

T2

T1

T2

T1

T1

T2

Dep Dep

Commit phase

TOE

IG

TOE

IG

TOE IG

T1
T2

TOE IG

TOE IG

Dep Dep

T1

T2

T2

T1

T2

T1

T1

T2

T1

T2

T1

T2

Dep Dep

Commit phase

TOE

IG

TOE

IG

TOE IG

T1
T2

TOE IG

TOE IG

Dep Dep

T1

T2

T2

T1

T2

T1

T1

T2
Reorder
deterministically

Dep Dep

Commit phase

TOE

IG

TOE

IG

TOE IG

T1
T2

TOE IG

TOE IG

Dep Dep

T1

T2

T1

T2

T2

T1

T1

T2Reordering done
COMMIT!

Introduction to ROCOCO
oSome transactions cannot be reordered

oWhat if the output of one piece acts as an input to another piece?

oThese pieces need to be executed immediately!

oWe need to determine which pieces are immediate and which can be deferred

oThis is done by a component called the “Offline Checker”

Unreorderable transactions

Item_table
Shard 1

Item_table
Shard 2

Order_tableOid_generator

Offline Checker : S/C Cycles

Item_table

Item_tableItem_table

Item_table
Sibling(S)-edge

Conflict(C)-edge

T1

T2

Offline Checker : Immediate/Deferrable
pieces

Item_table

Item_tableItem_table

Item_tableOid_generator

Oid_generator

Immediate piece Deferable piece

T1

T2

Typical ROCOCO workflow

Typical ROCOCO workflow

Typical ROCOCO workflow

Protocol : Start phase
oCoordinator sends requests for pieces to appropriate servers

oIf piece is immediate, server executes piece and returns output; else buffers for later execution

oServer creates and maintains dependency graph:
o Vertices : transactions and their status (started, committing or decided)

o Edges : Conflicting pieces between two transactions. Labelled by {immediate, deferrable} depending on
type of piece

oServer returns updated dependency graph and immediate pieces’ execution outputs

Protocol : Commit Phase
oBegins after coordinator sends commit requests containing aggregated dependency graph of all
servers

oUpdates status of transaction in graph to “committing” if status is “started”. Aggregates
coordinators dependency graph to its own

oWaits for all ancestors of transaction in graph to become committed

oCalculates SCC of transaction, sets all transactions within SCC to “decided” state

oWaits for all ancestors of SCC to be decided

oServer sorts transactions in SCC according to the “I”-edges, executes them in the order given by
the sort

oReturns results to coordinator

Optimizations and Fault Tolerance
Optimizations

◦ Track only one-hop dependencies instead of entire-graph dependencies
◦ One technique is to only add the most recent conflicts for each piece to server’s dependency graph instead of all previous ones

◦ In start phase, instead of entire dependency graph, server provides only subgraph of transaction’s
ancestors which are not yet “decided”

Fault tolerance
◦ Transaction logs persisted to disk; replicated using paxos-like systems

◦ Coordinator logs every transaction request

◦ Server logs every start request

Evaluation : Setup and Workload
oKodiak testbed; each machine having 1-core 2.6Ghz AMD Opteron 252 CPU, 8GB RAM, Gigabit
Ethernet

oEach client running 1-30 single-threaded client processes, each server machine running one
single-thread server process

oLogging turned off

oPartition strategy : Partition by warehouse, which in turn is partitioned by districts

oRatio of customer, district and warehouse = 3M:1K:1

Evaluation : Throughput

Evaluation : Commit Rates

Evaluation : Latency

Evaluation : Scale

Related Work
o2PL Forms and variations : Gamma, Bubba, R*, Spanner (replicated commit)

oOCC forms and variations : H-store, VoltDB, MDCC, Percolator, Adya

oConcurrency control with limited transactions : Megastore (serializable transactions only within
a data partition), Granola, Calvin and Sinfonia (concurrency protocols for known read-write keys)

oDependency and interference : Paxos variants, COPS/Eiger (tracks dependencies within
operations), Warp

oTransaction Decomposition and Offline checking : Transaction Chopping theory by Shasha et al
(utilized by ROCOCO offine checker), Lynx

oGeodistributed systems with weaker semantics: Dynamo, Cassandra, Walter, Gemini

Comments, Criticism and Questions
oNo allowance for user-initiated aborts

oAny difference in performance for read-only and read-write transactions? Evaluations are
combined for both types

oBreaking transactions to pieces: is this trivial for all OLTP systems?

