Paxos Quorum Leases

Sayed Hadi Hashemi

BACKGROUND

* Setting
— Status: Key-Value Storage
— Commands: Read / Write / Batch (Read, Write)
— Goal: Minimized WAN Delay

* Original Paxos

— Read: At least 2 RT (more in case of dueling
leaders)

— Write: Atleast 2 RT

Paxos
Can we do any better?

Client \

/

Request (CMD) Result / ACK
,I
\ /
Replica O N
/A [%
\\\\
Prepare | | OK | | Accept (CMD) | | Accept (OK) Committed (CMD)
\\ // \ / L
\ \
\
Replica 1 “-\ —
\\
\
\
\
\
\
\
A
\
Replica 2 <

RT

e Multi Paxos

— Temporary Stable Leader Replica to ignore
Prepare (election) phase

— Read: 1 RT from the leader
— Write is the same as the read

— A replica becomes the stable leader by running
the prepare phase for a large number of instances
at the same time, taking ownership of all of them.

* Google’s Megastore
— All Replica are leader!
— Read: 0 RT from any Replica! (Reading Locally)
— Write: At least 1 RT to All Replica

Steady state interaction in Multi-Paxos.
The asynchronous messages are represented as dashed arrows.

Client A
\ ,
V4
4

Request (CMD) Result/ACK

/

Leader \ /

Vi

Replica O \ / N
W
\\\\\

Accept (CMD) | | Accept (OK) Committed (CMD)

\ / \ \\
\
\ 4

Replica 1 Y

Replica 2

RT

Megastore

Client 7 h >
U4 U4
_ \
Request (Read) Result Request (Write) ACK
\ \
Replica 0 - >
RN
Accept (OK) | ™
\ \\
Accept (CMD) // Committed (CMD)
Replica 1 A \‘\ —>
\\
\
\
\
\
\
\
\
\
Replica 2 —>

RT

Can we have benefits of the both?

* Quorum Leases
— Middle ground

— Read: Most of the time 0 RT (80% in the
experiment), 1 RT otherwise

— Write is almost the same as the Multi Paxos

QUORUM LEASES

Overview

The idea is to have multiple leases for different
sets of objects

Each lease is granted to lease holders by a
majority of grantors

Read:

— Lease holders can read locally while the lease is active
— Any one else, use Multi-Paxos
Write:

— Notify Lease holders synchronously through Lease
Grantors (Majority)

Leasing with time expiration

e

1

|

|

I ne
Local Writes ! '

' ! Local Reads
Not Allowed : i Possible

} .

| |

] P oy

i Lease expires
Local Writes Local Reads

Possible Not Allowed

Leasing with early revocation

-

G,

Local Writes : RE
Not Allowed VOg 7 Local Reads
: ' Possible

L ‘_’QL"——
Local Reads
Local Writes Not Allowed
Possible

Figure 2. Leasing with and without revocation.

-
....

[T 7
/ /
/ /
// I,
/
/" |R4 |/
/ /
.‘. // II
R2 Lease
/. Holders /
. » /
. Grantors ./ . (any size)
“(Majority).”] y
\ \ .‘ :
~. YRS}

\ /

Figure 3. An example lease in which a majority of replicas
(R1, R2, and R5) have granted leases to two lease holders (R4
and RS).

* Lease Configuration

— Describes the set of granted objects to quorum leases
* Replicais added to a lease if it reads an object frequently

* Replicais removed from a lease if it fails, or it stop reading
an object frequently

* Granting and Refreshing leases

— |N+1|/2 grantors will activate a lease for a set of
holders

— Grantor Promise Holder that:
* Notify r synchronously before committing any update

* Acknowledge “Accept” and “Prepare” for writing with the
condition that the proposer must notify r synchronously

Lease Configuration

* Describes the set of granted objects to quorum leases
— Replica is added to a lease if it reads an object frequently

— Replica is removed from a lease if it fails, or it stop reading
an object frequently

* Steps:

— Replicas track the frequency of reads and sends this
information to the leader

— Leader periodically uses this tracking information to
update the lease configuration

— Lease Configuration Changes are distributed using another
instance of Paxos

Granting and Refreshing leases

Grantor Promise Holder that:
— Notify r synchronously before committing any update

— Acknowledge “Accept” and “Prepare” for writing with the condition
that the proposer must notify r synchronously

Establish:

— Guard

— send Promise to every other replica
— Optional ACK

Renew:

— Promise, ACK

Failed Holders

— Grace

— Lease Configuration
— Wait

Grant Lease

Grantor

Holder

T1 T3 JE t_lease!
}(7 t_guard > € t_lease? >
f l-____"'_______'i
Guard ACK i Promise ACK |
e M
Guard Promise ,'l
\ \ /
S —
t_lease
}4 t_guard >
T2 T4

1. if Promise ACK has received

2. if Promise ACK has not received

Grant Renew

Grantor

Holder

€ t_lease
|
T1 T3 <T5 t_lease N
t_guard > € t_lease? >
£ P] o]
Guard ACK ' Promise ACK | ' Promise ACK |
e & e
Guard Promise ,'l Promise ,'I
\ \ 'l 'l
1 1
«— =
t_lease
}4 t_guard > E——1 t_lease [———>
T2 T4 T6 —

1. if Promise ACK has received

2. if Promise ACK has not received

Establishing leases

Every replica R becomes a grantor:

1: send Guard(guard_duration) to every other replica

2: for every GuardACK from any replica H do

3: set

grant _timerg[H| < guard_duration + lease_duration

send Promise(lease_duration) to H

. for every PromiseReply from any replica H do

if reply received before grant_timery[H| expired then
set grant_timerg|H| < lease _duration

N s

Any replica H, on receiving a Guard(guard_duration)
from a replica R:

8: set guard_timery R| < guard_duration
9: reply with a GuardACK
10: wait for a Promise(lease_duration) from R
11: if Promise received before guard_timery |R] expires
then
12: set lease_timery|R| < lease_duration
13: reply with PromiseReply to R

Renewing leases

Every replica R that is a grantor:

14: for every other replica H do
15: set
grant_timerg|[H| < lease _duration + guard_duration
16: sett’ < the time since the most recent ACK from H
17: setsegack < the sequence number of most recent
ACK from H
18: send Promise(lease_duration, t', seq ack) to H
19: for every PromiseReply from any replica H do
20: set grant_timerg|H| <— min(grant_timerg|H]|,
lease _duration)

Any replica H, on receiving a Promise(lease _duration, t',
seqack) from a replica R:

20: if Promise received before time ¢’ + guard_duration
since sending ACK with sequence seqck then

21: set lease_timery|R| < lease_time

22: reply with PromiseReply to R

{A lease holder H can consider the lease active if at least | N /2| promises from different replicas have yet to expire

(where N is the total number of replicas). }

EVALUATION

Evaluation

Run implementations of quorum leases, classic
leader leases and Megastore-type leases

Geo-distributed Amazon EC2 cluster.

5 Multi-Paxos replicas in Virginia, Northern
California, Oregon, Ireland and Japan.

10 Client co-located in each replica

Workload
— YCSB key-value workload (Zipf)
— Uniform key-value workload

JP CA OR VA IRL

J 04 120 120 180 270
@> 04 20 85 150

Oregon 04 75 170
Virginia 0.4 92
Ireland 0.4

Table 1. Approximate round-trip times between datacenters
in milliseconds.

Selects as leader because of Low RTT

Testl: Latency Evaluation

Multi-Paxos Leader: Northern California

Each client sends 10000 request to its co-
located replica

Request:

— 1:1 Read-Write
— 9:1 Read-Write

Parameters:

— lease duration: 2s, renew duration: 500ms, lease
configuration update: every 10s

Virginia Virginia

100 - 100 o
ﬁ 80 QL-uniform § 80 ‘ §
(] — <
o« = E
5 60 S 60 : .
()] [0)] =
o o =
g 40 { & 4t} |
= [=4 -+
8 8 ;
B 20 1 @ 20 | '5 .
o : o i

0 s L 4 1) ! 0 . il ! !
1 10 100 1000 10 100 200300 1000
Read Latency [ms] Write Latency [ms]
Ireland Ireland

100 : - e : 100 : -
» ‘_F- QL =—— " P [j—
2 QLCniform o | 2 gt £ QL-uniform o |
e LL wewsnns § LL =eesnees
5 ML oo {1 % eof ML e -
(] (o) i
o ()] e
o . & 40+ .
c c .
8 8 5
) 1 5 20 : N
o o :

0 ! L L 1 0 L 1 :l !
1 10 100 1000 10 100 200300 1000
Read Latency [ms] Write Latency [ms]

Figure 6. CDFs of client-observed latency for each site, with all three lease techniques: quorum lease (QL), single leader lease
(LL), and Megastore-type lease (ML). QL-uniform corresponds to quorum leases for a uniformly-distributed workload. The

read-to-write ratio in these experiments was 1:1. The Multi-Paxos leader is always located in California. Note the log scale on
the X axis.

LL is the best in writing, ML in reading

Percentage of Reads Percentage of Reads

Percentage of Reads

100
80
60
40

20

20

California

"""""""" QL ——
L QL-uniform e |
LL =sssesss
i ML evvrenes]
1 10 100 1000

Read Latency [ms]

ST

< 1

Read Latency [ms]

10 100

Percentage of Writes Percentage of Writes

Percentage of Writes

California

100 — |
& X QL e
80 : : QL-unifoer T
60 | Yo TR _
40 I gl |
20 |
0 i 1
10 100 200300 1000
Write Latency [ms]
Japan
100 r—
80 [QL-unifoLm S—
60 | : ML everee |
40 o i::“ . |
£
20 § |
0 L i i o 1
10 100 200300 1000
Write Latency [ms]
100 l
L —
80 - QL-unifoer i
60 ML ceeeeeees |
40 |
20 |
0 Ji ; 1 L
10 100 200300 1000

Write Latency [ms]

Fast local reads
Japan 81%
California 95%
Oregon 89%
Virginia 89%
Ireland 81%

Table 2. Percentages of fast local reads (smaller than 10 ms)
for wide-area quorum leases with 10% writes and 90% reads,
Zipt-distributed.

Test2: Recovering from
a Replica Failure

* Shutdown a (non leader) replica, 10s after
starting the test (Lease Configuration Update)

* Parameters:

— Guard duration: 2s, Grace delay: 5s, lease

duration: 2s, renew duration: 500ms, lease
configuration update: every 10s

e Recover time:

— Update + Grace + Guard + Lease

10000 F \ ' ' ' 3

- “

— o

£ 1000 |

) i f

c

|5 i 1

3 100 — mmmmmmm

10 - I 1 I 1

0 10000 20000 30000 40000 50000

Command issue time [ms]

Figure 7. Latency of write requests over time. Ten seconds
into the experiment, a non-leader replica fails.

Test3: Throughput in a Cluster

Run in one local cluster (no geo-distributed)

Requests are generated open-loop by one client
for each replica

2 Situations:

— (1) different objects are popular at different replicas

— (2) clients direct their reads uniformly at random
across all replicas.

Use batching to commit writes (the leader
batches up to 5000 updates at a time)

700000
600000
500000
400000
300000
200000
100000

0

Throughput [ops/sec]

& o

Reads Bl °T..........pgfso

Writes 1 |41
Uniformly s

distributed reads

X gt
\E‘?)\‘?)Q’ """""""

Leader-lease

..

Quorum-lease Megastore-lease

Figure 8. Local-area read and write throughput for different
leasing strategies. The “Uniformly-distributed reads™ for
quorum leases corresponds to the situation when clients do
not know which replicas can read locally which objects. Error
bars represent 95% confidence intervals.

REVIEW

Pro

Strong Consistency

Acceptable Availability

Combine the best of two approaches
Using objects, instead of Replica

Separating “Lease Configuration Updates”
than the other operations

Compatibility with Multi-Paxos (or other
implementations)

Cons

* What is the messaging overhead?
— Lease Renewal
— Lease Configuration

* Experiment
— 1:1 Read-Write Ratio vs. 9:1

* Recovery Time in Practice:
— Update + Grace + Guard + Lease
— Worse case +20s

QUESTIONS?

