
Scaling Distributed
Machine Learning with
the
B A S E D O N T H E P A P E R A N D P R E S E N T A T I O N :

S C A L I N G D I S T R I B U T E D M A C H I N E L E A R N I N G W I T H T H E P A R A M E T E R S E R V E R – G O O G L E , B A I D U , C A R N E G I E M E L L O N U N I V E R S I T Y

I N C L U D E D I N T H E P R O C E E D I N G S A T O S D I 1 4

P R E S E N T A T I O N B Y : S A N C H I T G U P T A

Data is Large and Increasing!

Characteristics & Challenges of ML jobs

• Training Data is Large – 1TB to 1PB

• Complex Models with Billions and Trillions of Parameters

• Parameters are shared globally among worker nodes:
• Accessing them incurs large Network costs
• Sequential ML jobs require barriers and hurt performance by blocking
• At scale, Fault Tolerance is required as these jobs run in a cloud environment

where machines are unreliable and jobs can be preempted

Key Goals and Features of Design
•Efficient Communication: asynchronous communication model (does not block computation)

•Flexible Consistency Models: Algorithm designer can balance algorithmic convergence and
system efficiency

•Elastic Scalability : New nodes can be added without restarting framework

•Fault Tolerance and Durability: Recovery from and repair in 1 sec.

•Ease of Use: easy for users to write programs

Architecture & Design Details

Architecture: Data and Model

Training Data

Model

Worker Machines

Server Machines

Push
Pull

Work

Work
Resource
Manager

Server
Manager

Task
Scheduler

Example: Distributed gradient Descent
Server Machines

Worker Worker

• Workers get the Assigned training
data

• Workers Pull the Working set of
Model

• Iterate until Stop:
• Workers Compute Gradients
• Workers Push Gradients
• Servers Aggregate into current

model
• Workers Pull updated model

Training Data

Work

Work

Architecture: Parameter Key-Value
•Model Parameters are represented as Key – Value pairs

•Parameter Server approach models the Key-Value pairs as sparse Linear Algebra Objects.

•Batch several key-value pairs required to compute a vector/matrix instead of sending them one
by one

•Easy to Program! – Lets us treat the parameters as key-values while endowing them with matrix
semantics

Architecture: Range Push and Pull
• Data is sent between Workers and Servers using PUSH and PUSH operations.

•Parameter Server optimizes updates communication by using RANGE based
PUSH and PULL.

• Example: Let w denote parameters of some model
• w.push(Range, dest)
• w.pull(Range, dest)
• These methods will send/receive all existing entries of w with keys in Range

Architecture: Asynchronous tasks and
Dependency

•Challenges for Data Synchronization:

• There is a MASSIVE communication traffic due to frequent access of
Shared Model

• Global barriers between iterations – leads to:
• idle workers waiting for other computation to finish
• High total finish time

Architecture: Flexible Consistency
• Can change the consistency model for the system, as per the requirements of the job

•Up to the algorithm designer to choose the flexible consistency model

•Trade-off between Algorithm Efficiency and System Performance

Architecture: User Defined Filters
•Selectively Synchronize (key, value) pairs.

•Filters can be placed at either or both the Server machines and Worker
machines.

•Allows for fine-grained consistency control within a task

•Example: Significantly modified filter: Only pushes entries that have changed for
more than an amount.

Implementation: Vector Clocks &
Messaging

•Vector Clocks are attached for each (Key, value) pairs for several purposes:
• Tracking Aggregation Status
• Rejecting doubly sent data
• Recovery from Failure

•As many (key, value) pairs get updated at the same time during one iteration, they can share the
same clock stamps. This reduces the space requirements.

•Messages are sent in Ranges for efficient lookup and transfers.

•Messages are compressed using Google’s Snappy compression library.

Implementation: Consistent Hashing &
Replication

•The parameter server partitions the keys on to the Servers using Ranged Partitioning.

•The Servers are themselves hashed to a virtual ring similar to Chord.

•Server nodes store a replica of (Key, value) pairs in k nodes
counter clockwise to it.

Evaluation

Evaluation: Sparse Logistic Regression
•One of the most popular large scale Risk Minimization algorithm.

• For example in the case of ads prediction, we want to predict the revenue an ad will generate.

•It can be done by running a logistic regression on the available data for ads which are ‘close to’
the ad we want to post.

•The experiment was run with:
• 170 billion examples
• 65 billion unique features
• 636 TB of data in total
• 1000 machines: 800 workers & 200 servers
• Machines: 16 cores, 192 GB DRAM, and 10 Gb Ethernet links

Summary and Discussion

Summary: Pros
•Efficient Communication:

• Batching (key,value) pairs in Linear Algebra objects
• Filters to reduce unnecessary communication & message compression
• Caching keys at worker and server nodes for local access

•Flexible Consistency Models:
• Can choose between Sequential, Eventual, and Bounded delay consistency models
• Allows for tradeoffs between System Performance and Algorithmic Convergence

•Fault Tolerance and Durability:
• Replication of data in Servers
• Failed workers can restart at the point of failure by using vector clocks

•Ease of Use:
• Linear Algebra objects allow for intuitive implementation of tasks

Summary: Cons & Further Discussion
• What are System A and System B? No insight into design differences.

• Server Manager Failures and Task Scheduler failures are not discussed.

• No experiments on the other two systems with Bounded delay model. System
B’s waiting time may reduce if implemented with a Bounded Delay model.

	Scaling Distributed Machine Learning with the
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Characteristics & Challenges of ML jobs
	Key Goals and Features of Design
	Slide Number 13
	Architecture: Data and Model
	Example: Distributed gradient Descent
	Architecture: Parameter Key-Value
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Architecture: Range Push and Pull
	Architecture: Asynchronous tasks and Dependency
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Architecture: Flexible Consistency
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Architecture: User Defined Filters
	Implementation: Vector Clocks & Messaging
	Implementation: Consistent Hashing & Replication
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Evaluation: Sparse Logistic Regression
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Summary: Pros
	Summary: Cons & Further Discussion

