
Low-Latency Multi-Datacenter 
Databases using Replicated 

Commit
Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, 

Amr El Abbadi

UCSB

Presented by Ashutosh Dhekne



Main Contributions

• Reduce cross data center communication trips 

• Compare Replicated Commit with Replicated Log

• Extensive experimental study for evaluation of the approach
• Number of data centers involved

• Read vs Write operations

• Number of operations per transaction

• Data objects in the database

• Effect of used shards



2 Phase Commit

Coordinator Worker1 Worker2 Worker3

Do Work

Prepare

Y Y

Y

Do Commit

Y
Y

Y

Complete

Ready



Why merge 2PC and Paxos?

• Two phase commit is very good for reaching consensus 

• Agreement is guaranteed – only coordinator decides

• Validity is guaranteed – commit happens only if everyone is ready.

• Termination is guaranteed – no loops possible

• But Failures can wreak havoc 

• Paxos is good even if failures occur – quorum based, majority wins



R
ep

licated
 Lo

g vs C
o

m
m

its



Replicated Log – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

Paxos

Data
Transaction



Replicated Log – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

2PC Prepare
message to Paxos
Leaders



Replicated Log – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

Acquire exclusive 
locks and log 2PC 
Prepare locally



Replicated Log – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

Leader informs
same shard in 
other datacenters

Those shards reply 
accept



Replicated Log – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

All of those 
messages together 



Replicated Log – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

Paxos leaders know 
status of their 
shards in other data 
centers

Paxos leaders ack
the coordinator 
that they are ready

Y
Y



Replicated Log – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

Coordinator can 
now log commit

Then asks it’s peer 
shards to commit 
and receives acks

Y
Y



Replicated Log – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

Coordinator 
releases lock

Informs other 
leaders that 
commit is made



Replicated Log – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

Other leaders go in 
another frenzy to 
intimate their 
shards on other 
data centers

Finally, locks are 
released



Replicated Commit – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

Paxos accept 
request to 
coordinators



Replicated Commit – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

2PC prepare
message is sent 
to other shards 
locally



Replicated Commit – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

All acquire lock 
and log 2PC 
prepare message



Replicated Commit – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

All reply ready to 
the coordinator



Replicated Commit – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

All coordinators 
inform each 
other and the 
client.

Client keeps 
quorum info



Replicated Commit – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

Commit is sent to 
all shards locally



Replicated Commit – Step by Step

Client

Datacenter 1

X Y Z

Datacenter 2

X Y Z

Datacenter 3

X Y Z

Finally, locks are 
released



Replicated Log Vs Replicated Commit

• Number of messages – Replicated Log requires a lot of inter-
datacenter message transfers

• Latency – Network links across the continents are not at speed of light

• Access Locality – Messages exchanged locally are very fast

• A solution to higher latency – reduce the number of cross datacenter 
messages 

• Replicated Commit achieves this



Experiments



Experimental Setup

• 5 Data centers

• 2500 transactions

• 3000 items in the database, 1000 in each shard

• 3 shards per data center

• 50 operations per second in each datacenter



Average Commit Latency – various 
datacenters
• Replicated Commit provides 

much faster responses than 
Replicated Logs

• Combination of servers from 
different regions versus 
combination of servers from 
same region has large 
impact



Scalability of Replicated Commit



Scalability of Replicated Commit

Replicated Commit has a very low read latency 
and comparable other latencies

Replicated Commit supports many more 
clients than Replicated Log



Changing Database Properties

Increasing number of data objects does not 
affect Replicated Commit latency

Replicated Commit latency is agnostic of 
number of shards used



Fault Tolerance

• Sudden fault at one of the 
datacenters

• All clients are immediately served 
by another data center

• Latency increases in proportion

• Total latency for all clients gets 
affected possibly because of load

Served by Ireland



Comments

• Comparison between SQL and NoSQL is missing

• Effect of individual shards failing

• What is the tradeoff between Replicated Logs and Replicated 
Commit?
• What are we losing if we adopt Replicated Commit?
• Why does everyone not use Replicated Commit?

• Comparisons with other techniques discussed in the related work 
could have bolstered the paper even further.

• Intra-datacenter and inter-datacenter protocols are different (physical 
location knowledge helps the protocol – loss of abstraction)



Discussion



Conclusion

• A modified approach to achieving ACID properties in multi-datacenter 
settings is discussed

• Gains with respect to Replicated Logs are proportional to the latency 
between the servers

• More processing is done locally inside a data-center and then 
consensus is reached



Additional Material



Fault Tolerant Logs

Replica 1 Replica 2 Replica 3

Client App

Paxos
Framework

Submit

Callback CallbackCallback

value value value

value


