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Main Contributions

• Reduce cross data center communication trips 

• Compare Replicated Commit with Replicated Log

• Extensive experimental study for evaluation of the approach
• Number of data centers involved

• Read vs Write operations

• Number of operations per transaction

• Data objects in the database

• Effect of used shards
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Why merge 2PC and Paxos?

• Two phase commit is very good for reaching consensus 

• Agreement is guaranteed – only coordinator decides

• Validity is guaranteed – commit happens only if everyone is ready.

• Termination is guaranteed – no loops possible

• But Failures can wreak havoc 

• Paxos is good even if failures occur – quorum based, majority wins
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Replicated Commit – Step by Step
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Replicated Commit – Step by Step
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Replicated Commit – Step by Step
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Replicated Commit – Step by Step
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Replicated Log Vs Replicated Commit

• Number of messages – Replicated Log requires a lot of inter-
datacenter message transfers

• Latency – Network links across the continents are not at speed of light

• Access Locality – Messages exchanged locally are very fast

• A solution to higher latency – reduce the number of cross datacenter 
messages 

• Replicated Commit achieves this



Experiments



Experimental Setup

• 5 Data centers

• 2500 transactions

• 3000 items in the database, 1000 in each shard

• 3 shards per data center

• 50 operations per second in each datacenter



Average Commit Latency – various 
datacenters
• Replicated Commit provides 

much faster responses than 
Replicated Logs

• Combination of servers from 
different regions versus 
combination of servers from 
same region has large 
impact



Scalability of Replicated Commit



Scalability of Replicated Commit

Replicated Commit has a very low read latency 
and comparable other latencies

Replicated Commit supports many more 
clients than Replicated Log



Changing Database Properties

Increasing number of data objects does not 
affect Replicated Commit latency

Replicated Commit latency is agnostic of 
number of shards used



Fault Tolerance

• Sudden fault at one of the 
datacenters

• All clients are immediately served 
by another data center

• Latency increases in proportion

• Total latency for all clients gets 
affected possibly because of load

Served by Ireland



Comments

• Comparison between SQL and NoSQL is missing

• Effect of individual shards failing

• What is the tradeoff between Replicated Logs and Replicated 
Commit?
• What are we losing if we adopt Replicated Commit?
• Why does everyone not use Replicated Commit?

• Comparisons with other techniques discussed in the related work 
could have bolstered the paper even further.

• Intra-datacenter and inter-datacenter protocols are different (physical 
location knowledge helps the protocol – loss of abstraction)



Discussion



Conclusion

• A modified approach to achieving ACID properties in multi-datacenter 
settings is discussed

• Gains with respect to Replicated Logs are proportional to the latency 
between the servers

• More processing is done locally inside a data-center and then 
consensus is reached



Additional Material



Fault Tolerant Logs
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