Limplock: Understanding the Impact
of Limpware on Scale-Out Cloud

Systems

THANH DO, MINGZHE HAO, TANAKORN
LEESATAPORNWONGSA, TIRATAT PATANA-ANAKE, HARYADI

S. GUNAWI
SOCC 2013

Presented by: Uttam Thakore

__]

Outline

What are “limpware” and “limplock”?

lllustration
Limpbench: limplock benchmarking tool

Evaluation of limplock on:
° Hadoop

> HDFS

o ZooKeeper

o Cassandra

o HBase

Fault-tolerance & performance failures

Large cloud systems are very complex
- Number of HW failures continue to increase

Existing mechanisms detect crash-stop failures and some

performance failures
o E.g., stragglers, unbalanced load

“Limplock”

Performance failure due to “limpware” —
hardware/software with significantly degraded performance

Twilight zone between slow and failed hardware/software
o Undetected by existing mechanisms, so recovery does not happen

Causes of Limpware

Disk:
> Weak head
> Vibration

° Firmware bugs

> Bad sector remapping

Network:
o Broken module or adapter
o Corrupt packets = Error correction
o Network driver bugs
o Power fluctuations

Types of Limplock

Operation limplock:
> Single point of failure (SPOF)
° Long timeout durations
o Memoryless retry

Hadoop

Mappers Reducers

Types of Limplock

Operation limplock:
o Single point of failure (SPOF) HDFS
° Long timeout durations
o Memoryless retry

cascades into Request buffer

Master

Node limplock:
o Exhaustion of resource pool

° Unbounded thread or queue

Request buffer

‘ Request buffer

Client
Data nodes

|

Types of Limplock

Operation limplock:
> Single point of failure (SPOF)
° Long timeout durations
o Memoryless retry

cascades into

Node limplock:
o Exhaustion of resource pool

° Unbounded thread or queue

. cascades into
Cluster limplock:

o All nodes in limplock
o Master node in limplock

Limpbench

Goals:
o Quantify limplock in cloud systems
o Uncover designs that lead to limplock

56 experiments, benchmarking 5 cloud systems
o Hits 22 protocols

Components:
o Evaluate data-intensive protocols

o Stress request load
° Fault- (and limp-) injection
o White-box analysis

Limpbench

ID Protocol Limp- | Injected Worklead Base | OL | NL | CL
ware Node Latency

Fl Logging Disk Master Create 8000 empty files 12 Vv N Vi

F2 Write Disk Data Create 30 64-MB files 182 ‘ . v

F3 Read Disk Data Read 30 64-MB files 120 ; ;

F4 Metadata Read/Logging | Disk Master Stats 1000 files + heavy updates 91 Vv v v

F5 Checkpoint Disk Secondary Checkpoint 60K transactions RU TN 3

F6 Write Net Data Create 30 64-MB files 208 Vv

F7 Read Net Data Read 30 64-MB files 104 | .

FR Regeneration Net Data Regenerate 90 blocks 432 Vv Vv Vv

F9 Regeneration Net Data-S/MData-D | Scale replication factor from 2 1o 4 11 v

F10 | Balancing Net Data-O/Data-U | Move 347 GB of data 4105 Vv . .

F11 | Decommission Net Data-L/Data-R | Decommission a node having 90 blocks 174 vV v v

HI Speculative execution Net Mapper WordCount: 512 MB dataset 80 N : :

H2 Speculative execution Net Reducer WordCount: 512 MB dataset 80 %

H3 Speculative execution Net Job Tracker WordCount: 512 MB dataset S0 . . :

H4 | Speculative execution Net Task Node 1000-1ask Facebook workload 4320 | Vv Vv

Z1 Get Net Leader Get 7000 1-KB znodes 4 : . i

Z2 Get Net Follower Get 7000 1-KB znodes 5 ; :

Z3 Set Net Leader Set 7000 1-KB znodes 23| Vv v

74 Set Net Follower Ser 7000 1-KB znodes 26 . . .

Z5 Set Net Follower Ser 20KB data 6000 times to 100 znodes 64 v v v

C1 Put (quorum) Net Data Put 240K Key Values 66 :

C2 Get (quorum) Net Drata Get 45K KevValues 73

C3 | Get (one) + Put (all) Net Data Get 45K Key Values + heavy puts 36 '

BI Put Net Region Seryer Put 300K Key Values 6l V

B2 Get Net Region Server Get 300K Key Values 151 v

B3 [Scan Net Region Server Scan 300K Key Values 17 v :

B4 | Cache Gev/Pul Net Data-H Get 100 KeyValues + heavy puts 41 V v

BS | Compaction Net Region Server | Compact 4 100-MB sstables 122 | +/ i

Table taken from paper, [2]

Experimental evaluation of
cloud systems

Component with Limpware M Datanode disk | Datanode NIC

Operation Limplock?

Node Limplock? Yes No Yes

Cluster Limplock? Yes No Yes

Datanode writes buffer in OS, so no limplock below write
threshold

Limping datanode NIC = limping reads and writes
Logging when master disk is limping = cluster limplock

Regeneration limplock = datanode and cluster limplock

HDFS

a) Read
1 1 &
>0.8 0.8
§0.6 06 ;
‘§0.4 - 0.4 ;"s,
Q0.2 ¢ 02 4
0 S L L L TP T T TP P PP P PP P PTT T 0 A P kit LU LL
5 20 40 60 80 100 5 20 40 60 80 100
Nodes # Nodes

Probability of experiencing at least one limplock
(r = number of user requests)

Figure taken from paper, [2]

HDFS

c) Block Regeneration d) Cluster Regeneration

: 1 b = 6400 —
>08 | 08 : b=3200) “m—
= | 3 b=1600 ——
8901 p=3200 —— 5 b = 800
004 1 b=1600 — 1 04 b =400 sesssnusun
Q0.2 | 33288.« - 02} i . ~

o M= : T‘lcu"..“ O ‘ =

5 20 40 60 80 100 5 20 40 60 80 100
Nodes # Nodes

Probability of experiencing at least one regeneration limplock
(b = number of 64MB blocks to regenerate)

Figure taken from paper, [2]

HDFS — Limpbench results

c
s =1000 No failure |
£8 100 | [igkcrash =—
2% 10 8 MB/s
gg Ul wes= B W ol
woy 0.08 MB/s —
F1. Logging F2. Write F3. Read F4. Read/Logging F5. Checkpoint
(Master) (Data) (Data) (Master) (Secondary)
cc
S 21000 No failure ———
S8100 | wamenn
25 Mops | | ‘ i
u’j % 0.} Mb; a— __- . . - L =
F6. Write F7. Read F8. Regeneration F9. Regeneration F10.Balancing
(Data) (Data) (Data) (Data-S/Data-D) (Data-O/Data-U)
5 £1000
23100
3% 10
g5 1 l
won - -

F11. Decommission
(Data-L/Data-R)

Figure taken from paper, [2]

Hadoop

Operation Limplock?
Node Limplock? No No No Yes
Cluster Limplock? No No No Yes

Mapper with slow NIC = all reducers slow down during
shuffle

HDFS limplock = reducer and mapper limplock

> No speculative execution!

All tasks are limping = node and cluster limplock

Hadoop

(a) Limplocked Reducers
1

:: Normal reducer
_okifplocked reducer 1
Limplocked reducer 2 «=«««= -
Limplocked reducer 3«

0O 200 400 600 800 1000 1200
Time (second)

T T w
8 u\\'*“,“.*‘:'l“’ﬂ g
n\l““"\‘““ :::
@ O —" T L
:‘ \\\\ “‘\I
8 g:"'
»w 06 iz
")) zz
O i
= 04+ i
()]
o
(A

0.2

3

0

Experiment H1: Degraded mapper NIC

Figure taken from paper, [2]

Hadoop

(b) Cascading Limplock (c) Job Throughput

100 ' ' - . 1200 : : : :
3 30-node cluster Normal e
> 80| ¥ 1000 + w/ 1 limping node
m -:
123 - ué_ 800 |
5 @ 600 -
Q
S 9 S 400 |
TE?- 20 :g 200 +
= 0 . . ' ' ' * 0 ' : ' : ' ' '

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Time (minute) Time (minute)

Facebook workload on a 30-node cluster

Figure taken from paper, [2]

Hadoop — Limpbench results

o
.S 31?88 No failure ——
5 -8 10 Node crash =1
8 = 10 Mbps =
x5 1 I
wew, 0.1 Mbps =—
H1. Spec. Exec. H2. Spec. Exec.
(Mapper) (Reducer)
 ax
.S 31988 | No failure =
5 -8 10 Node crash 1
8 = ‘ 10 Mbps s
- Tiops eyl
ww 0.1 Mbps =
H3. Spec. Exec. H4. Spec. Exec.
(Job Tracker) (Task Node)

Figure taken from paper, [2]

/00Keeper

Operations:
o Get —served by any node
o Create Follower Follower Leader Follower
o Set _ Server Server
Update operations — Bad Bad
> Delete must go through NIC \[[e
° Sync leader, require

quorum of followers

Clients

/00Keeper

Operation Limplock? Yes Yes
Node Limplock? Yes Yes
Cluster Limplock? Yes Yes

Gets are limplock-free

Updates are subject to leader or follower node limplock

/00Keeper

o

- = N
o O,
= caa
-0
===
ooy
TTT
nnwn

......

--
aene

#Reqs (x1000)

o O,

0 100 200 300 400 500 600

Time (second)

ZooKeeper throughput under single follower NIC degradation

Figure taken from paper, [2]

/ooKeeper — Limpbench results

-
.S 31?88 | No failure |)
53 10 | Node crash ==
8 = Y | 10 Mbps s
X2 | Ve N0 [.
ww 0.1 Mbps —
71. Get 72. Get
(Leader) (Follower)
§ $1000
23100
og 10
TR - = |
ks | ElEEE B
Z3. Set Z4. Set Z5. Set
(Leader) (Follower) (Follower)

Figure taken from paper, [2]

Cassandra
Node with Limpware

Operation Limplock? Yes
Node Limplock? No
Cluster Limplock? No

Weak consistency operations = No limplock
> However, “flapping” — 2x performance degradation

Full consistency operations = Limplock

Operation limplock does not cascade

Cassandra — Limpbench results
1000

o
S = 100 | No failure =
“5.8 10 Node crash =1
S 2 7| 10 Mbps s S S
i &
Wwaow 0.1 Mbps ==
C1. Put(quorum)
(Data)
=) 2
1000
23100 |
8'§ 1(1) R B
Y (,9) 1T m B
C2. Get(quorum) C3. Get(one) + Put(all)
(Data) (Data)

Figure taken from paper, [2]

HBase

Node with Limpware Region Master HDFS read | HDFS write
server NIC server NIC Ilmplock limplock
Yes

Operation Limplock?

Node Limplock? Yes No Yes Yes

Cluster Limplock? Yes No Yes Yes

HDFS limplock = limplock on all HBase protocols
o Only reprieve is if data is in HBase caches

Resource exhaustion from HDFS write limplock - HBase region
node limplock

Limplocked region server affecting metadata = cluster limplock

HBase — Limpbench results

S §1988 } No failure ———
‘5.8 10 Node crash =
Q2 [10 Mbps mmmm ‘
s: 1 rm= elE el
W 0.1 Mbps = ——— - A -
B1. Put B2. Get
(Region Server) (Region Server)
5 £1000 |
23100
% 10—
g8 il - S
B3. Scan B4. Cache Get/Put B5. Compaction
(Region Server) (Data-H) (Region Server)

Figure taken from paper, [2]

What to do?

Limplock avoidance:
o Converting limpware to crash-stop failures
o Quarantining limpware to prevent cascading

o Design in limplock tolerance
o E.g., differentiated threads per operation type (Cassandra)

Limplock detection
° End-to-end limpware detection
o Traditional straggler detection methods

Recovery:
° Fail-in-place
o Recovery mechanisms with memory

Conclusion

“Limplock” is a real concern

Existing failure detection and recovery mechanisms do not
handle limpware correctly

This paper serves to identify the failure type for further
formal study

Discussion

Do you think these causes are complete?
> How would we prove this?
o Formal definition of limplock?
> What are the most primitive forms of limpware?

Lack of concrete recovery mechanisms

Limpbench is lacking, not comprehensive

Where limplock does not cascade, scale mitigates limplock
How does limplock compare to network bottlenecks?

How would you use the paper in your research? Future
work?

References

[1] Thanh Do, “Limplock: Understanding the Impact of Limpware on Scale-out Cloud Systems,” presented at the 4th annual
Symposium on Cloud Computing, 2013.

[2] T. Do, M. Hao, T. Leesatapornwongsa, T. Patana-anake, and H. S. Gunawi, “Limplock: understanding the impact of limpware on
scale-out cloud systems,” in Proceedings of the 4th annual Symposium on Cloud Computing, 2013, pp. 1-14.

[3]). Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation - Volume 6, Berkeley, CA, USA, 2004, pp. 10-10.

[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File System,” in 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), 2010, pp. 1-10.

[5] “ProjectDescription - Apache ZooKeeper - Apache Software Foundation.” [Online]. Available:
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ProjectDescription. [Accessed: 10-Mar-2015].

[6] “The Apache Cassandra Project.” [Online]. Available: http://cassandra.apache.org/. [Accessed: 10-Mar-2015].

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

Backup Slides

Let me tell you a story...

“... 1GB NIC card on a machine that suddenly starts
transmitting at 1 Kbps,

this slow machine caused a chain reaction upstream in such
a way that the performance of entire workload for a 100
node cluster was crawling at a snail's pace, effectively
making the system unavailable for all practical purposes.”

— Borthakur of Facebook

Quote taken from SoCC presentation slides, [1]

Limpbench

5 £1000
SE900 | g
g% 10 SMB/s mm—
1 0.3 MB/s w—
Lﬁﬁ) 008 MB(s mm—
5 $1000
28100 | anmes
3‘;’ 1? 10 Mbps
=] 1 Mbps m—
wew 0.1 Mbps w—
1000
ég 100
8§ 10
F11. Decommission
(Data-L/Data-R)
5 $1000
83100
gz "
ﬁc% . |
72, Get
(Foliower)
5 $1000
-Qg 100
gz 1
53 -

3. Gét(one) + Put{ali)
(Data)

F1. Logaing
(Master)

Fo. Write
(Data)

H1. Spec. Exec.
(Mapper)

73, Set
(Leader)

Bl1. Put
(Region Server)

|
F2. Write
(Data)

F7. Read
(Data)

H2. Spec. Exec,
(Reducer)

74, Set
(Follower)

oll

B2. Get
(Region Server)

- =l

¥3. Read
(Data)

F8. Regeneration
(Data)

H3. Spec. Exec.
{Job Tracker)

7%, Set
(Follower)

B3. Scan
(Region Server)

Figure taken from paper, [2]

1

F4. Read/Logging
(Master)

F9. Regeneration
{Data-S/Data-D)

H4. Spec. Exec.
(Task Node)

.
C1. Put{quorum)
(Data)

54. Cache Get/Put
(Data-H)

F5. Checkpoint
{Secondary)

- ol

F10.Balancin
(Data-O/Data-U)

Z1. Get
{Leader)

C2. Get(quorum)
(Data)

il

BS. Col tion
(Region Server)

Hadoop

(hlork . £ K
g (1) fork ¢1) fork

G

a - Accia

Authors evaluate
speculative execution mechanism

= : ourpur
split | (5) remote read worker file 0
split 2 % 14} local write

worker

i3 ouput
split 4
)
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure taken from MapReduce paper, [3]

HDFS

Master node fields requests

Data nodes service requests and store data locally
Data stored in 64-MB blocks
Triple replication

Regeneration runs in background upon failure of datanode

Authors evaluate effect of degraded disk and NIC on master
and data nodes

/00Keeper

Single leader node, with multiple followers

Operations:
o Create — must go through leader
o Get — served by any node
o Set — must go through leader
o Delete — must go through leader
o Sync — must go through leader

Authors evaluate effect of degraded NIC on leaders and
followers

Cassandra

Distributed key-value store

Node involvement in operations depends on consistentency
level:

> ONE

° QUORUM

o ALL

Replication factor = 3

Authors evaluate effect of degraded NIC on put and get
protocols

HBase

Distributed key-value store running on top of HDFS

Row ranges are managed by region servers

Region assignment to nodes is handled by master servers

Authors evaluate effect of degraded NIC on region servers

