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Outline

What are “limpware” and “limplock”?

lllustration
Limpbench: limplock benchmarking tool

Evaluation of limplock on:
° Hadoop

> HDFS

o ZooKeeper

o Cassandra

o HBase



Fault-tolerance & performance failures

Large cloud systems are very complex
- Number of HW failures continue to increase

Existing mechanisms detect crash-stop failures and some

performance failures
o E.g., stragglers, unbalanced load




“Limplock”

Performance failure due to “limpware” —
hardware/software with significantly degraded performance

Twilight zone between slow and failed hardware/software
o Undetected by existing mechanisms, so recovery does not happen




Causes of Limpware

Disk:
> Weak head
> Vibration

° Firmware bugs

> Bad sector remapping

Network:
o Broken module or adapter
o Corrupt packets = Error correction
o Network driver bugs
o Power fluctuations



Types of Limplock

Operation limplock:
> Single point of failure (SPOF)
° Long timeout durations
o Memoryless retry

Hadoop

Mappers Reducers
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Types of Limplock

Operation limplock:
> Single point of failure (SPOF)
° Long timeout durations
o Memoryless retry

cascades into

Node limplock:
o Exhaustion of resource pool

° Unbounded thread or queue

. cascades into
Cluster limplock:

o All nodes in limplock
o Master node in limplock



Limpbench

Goals:
o Quantify limplock in cloud systems
o Uncover designs that lead to limplock

56 experiments, benchmarking 5 cloud systems
o Hits 22 protocols

Components:
o Evaluate data-intensive protocols

o Stress request load
° Fault- (and limp-) injection
o White-box analysis



Limpbench

ID Protocol Limp- | Injected Worklead Base | OL | NL | CL
ware Node Latency

Fl Logging Disk Master Create 8000 empty files 12 Vv N Vi

F2 Write Disk Data Create 30 64-MB files 182 ‘ . v

F3 Read Disk Data Read 30 64-MB files 120 ; ;

F4 Metadata Read/Logging | Disk Master Stats 1000 files + heavy updates 91 Vv v v

F5 Checkpoint Disk Secondary Checkpoint 60K transactions RU TN 3

F6 Write Net Data Create 30 64-MB files 208 Vv

F7 Read Net Data Read 30 64-MB files 104 | .

FR Regeneration Net Data Regenerate 90 blocks 432 Vv Vv Vv

F9 Regeneration Net Data-S/MData-D | Scale replication factor from 2 1o 4 11 v

F10 | Balancing Net Data-O/Data-U | Move 347 GB of data 4105 Vv . .

F11 | Decommission Net Data-L/Data-R | Decommission a node having 90 blocks 174 vV v v

HI Speculative execution Net Mapper WordCount: 512 MB dataset 80 N : :

H2 Speculative execution Net Reducer WordCount: 512 MB dataset 80 %

H3 Speculative execution Net Job Tracker WordCount: 512 MB dataset S0 . . :

H4 | Speculative execution Net Task Node 1000-1ask Facebook workload 4320 | Vv Vv

Z1 Get Net Leader Get 7000 1-KB znodes 4 : . i

Z2 Get Net Follower Get 7000 1-KB znodes 5 ; :

Z3 Set Net Leader Set 7000 1-KB znodes 23| Vv v

74 Set Net Follower Ser 7000 1-KB znodes 26 . . .

Z5 Set Net Follower Ser 20KB data 6000 times to 100 znodes 64 v v v

C1 Put (quorum) Net Data Put 240K Key Values 66 :

C2 Get (quorum) Net Drata Get 45K KevValues 73

C3 | Get (one) + Put (all) Net Data Get 45K Key Values + heavy puts 36 '

BI Put Net Region Seryer Put 300K Key Values 6l V

B2 Get Net Region Server Get 300K Key Values 151 v

B3 [ Scan Net Region Server Scan 300K Key Values 17 v :

B4 | Cache Gev/Pul Net Data-H Get 100 KeyValues + heavy puts 41 V v

BS | Compaction Net Region Server | Compact 4 100-MB sstables 122 | +/ i

Table taken from paper, [2]




Experimental evaluation of
cloud systems




Component with Limpware M Datanode disk | Datanode NIC

Operation Limplock?

Node Limplock? Yes No Yes

Cluster Limplock? Yes No Yes

Datanode writes buffer in OS, so no limplock below write
threshold

Limping datanode NIC = limping reads and writes
Logging when master disk is limping = cluster limplock

Regeneration limplock = datanode and cluster limplock



HDFS
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Figure taken from paper, [2]



HDFS

c) Block Regeneration d) Cluster Regeneration
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HDFS — Limpbench results
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Figure taken from paper, [2]




Hadoop

Operation Limplock?
Node Limplock? No No No Yes
Cluster Limplock? No No No Yes

Mapper with slow NIC = all reducers slow down during
shuffle

HDFS limplock = reducer and mapper limplock

> No speculative execution!

All tasks are limping = node and cluster limplock



Hadoop

(a) Limplocked Reducers
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Figure taken from paper, [2]



Hadoop

(b) Cascading Limplock (c) Job Throughput
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Figure taken from paper, [2]



Hadoop — Limpbench results
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/00Keeper

Operations:
o Get —served by any node
o Create Follower  Follower Leader Follower
o Set _ Server Server
Update operations — Bad Bad
> Delete must go through NIC \[[e
° Sync leader, require

quorum of followers

Clients



/00Keeper

Operation Limplock? Yes Yes
Node Limplock? Yes Yes
Cluster Limplock? Yes Yes

Gets are limplock-free

Updates are subject to leader or follower node limplock



/00Keeper
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Figure taken from paper, [2]



/ooKeeper — Limpbench results
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Figure taken from paper, [2]



Cassandra
Node with Limpware

Operation Limplock? Yes
Node Limplock? No
Cluster Limplock? No

Weak consistency operations = No limplock
> However, “flapping” — 2x performance degradation

Full consistency operations = Limplock

Operation limplock does not cascade



Cassandra — Limpbench results
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HBase

Node with Limpware Region Master HDFS read | HDFS write
server NIC server NIC Ilmplock limplock
Yes

Operation Limplock?

Node Limplock? Yes No Yes Yes

Cluster Limplock? Yes No Yes Yes

HDFS limplock = limplock on all HBase protocols
o Only reprieve is if data is in HBase caches

Resource exhaustion from HDFS write limplock - HBase region
node limplock

Limplocked region server affecting metadata = cluster limplock



HBase — Limpbench results
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What to do?

Limplock avoidance:
o Converting limpware to crash-stop failures
o Quarantining limpware to prevent cascading

o Design in limplock tolerance
o E.g., differentiated threads per operation type (Cassandra)

Limplock detection
° End-to-end limpware detection
o Traditional straggler detection methods

Recovery:
° Fail-in-place
o Recovery mechanisms with memory



Conclusion

“Limplock” is a real concern

Existing failure detection and recovery mechanisms do not
handle limpware correctly

This paper serves to identify the failure type for further
formal study




Discussion

Do you think these causes are complete?
> How would we prove this?
o Formal definition of limplock?
> What are the most primitive forms of limpware?

Lack of concrete recovery mechanisms

Limpbench is lacking, not comprehensive

Where limplock does not cascade, scale mitigates limplock
How does limplock compare to network bottlenecks?

How would you use the paper in your research? Future
work?
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Let me tell you a story...

“... 1GB NIC card on a machine that suddenly starts
transmitting at 1 Kbps,

this slow machine caused a chain reaction upstream in such
a way that the performance of entire workload for a 100
node cluster was crawling at a snail's pace, effectively
making the system unavailable for all practical purposes.”

— Borthakur of Facebook

Quote taken from SoCC presentation slides, [1]



Limpbench
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Hadoop
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HDFS

Master node fields requests

Data nodes service requests and store data locally
Data stored in 64-MB blocks
Triple replication

Regeneration runs in background upon failure of datanode

Authors evaluate effect of degraded disk and NIC on master
and data nodes



/00Keeper

Single leader node, with multiple followers

Operations:
o Create — must go through leader
o Get — served by any node
o Set — must go through leader
o Delete — must go through leader
o Sync — must go through leader

Authors evaluate effect of degraded NIC on leaders and
followers



Cassandra

Distributed key-value store

Node involvement in operations depends on consistentency
level:

> ONE

° QUORUM

o ALL

Replication factor = 3

Authors evaluate effect of degraded NIC on put and get
protocols



HBase

Distributed key-value store running on top of HDFS

Row ranges are managed by region servers

Region assignment to nodes is handled by master servers

Authors evaluate effect of degraded NIC on region servers




