
LFGRAPH: SIMPLE AND
FAST DISTRIBUTED GRAPH
ANALYTICS
Hoque, Imranul, Vmware Inc. and Gupta, Indranil, University of
Illinois at Urbana-Champaign – TRIOS ‘13

Presented by :
Chaitanya Datye

Why Distributed Graph Processing ??

¨  Graphs are everywhere!! – Social Networks,
Finance, Stocks, Transportation Networks, Search
engines, etc

¨  Well, These graphs are HUGE !!! – Millions and
billions of vertices and edges

Distributed Graph Analytics Engine –
 Key Aspects

Computations – Low and Load balanced

Communications – Low and Load balanced

Low Preprocessing Cost

Smaller Memory Footprint

System should be Scalable

Server 2

Server 1

Pregel

B

C

D

E

Is there any better option?

Goal Pregel

Computation 2 passes, Combiners

Communication ∝ #Edge-cuts

Pre-Processing Cheap(Hash)

Memory
High(store out-edges + buffered

messages)

Scalability Good but needs a min #servers

GraphLab

Server 2

Server 1

B

C

D

E

D

E

Can we do better ?

Goal GraphLab

Computation 2 passes

Communication ∝ #vertex ghosts

Pre-Processing Cheap(Hash)

Memory
High(store in- and out-edges +

ghost values)

Scalability Good but needs a min #servers

Server 2

Server 1

PowerGraph

B

C

D

E

Can we still do better ?

Goal PowerGraph

Computation 2 passes

Communication ∝ #vertex mirrors

Pre-Processing Expensive (Intelligent)

Memory
High(store in- and out-edges +

mirror values)

Scalability Good but needs a min #servers

LFGraph – YES, We Can !!!

Cheap Hash based partitioning

Decoupling Computation and Communication

Publish – Subscribe Mechanism

Single – Pass Computations

No Locking

In – Neighbor Storage

Publish Subscribe Mechanism

¨  Subscribe Lists
¤ Created during preprocessing and are short lived
¤ Per remote server
¤ List contains vertices to be fetched from that server.
¤ Garbage collected after preprocessing iteration

¨  Publish Lists
¤ Created based on the Subscribe lists.
¤ Each server maintains a Publish list for each remote

server consisting of the vertices it needs to send to that
server.

Publish Subscribe Mechanism

Server 2

Server 1

B

C

D

E
Subscribe to {A}

Publish List at S1 for
S2 : {A}

Allows for Fetch-Once
behavior since values are

fetched only once

LFGraph System Design

Local and Remote Value Stores

¨  Local Value Store
¤  Real Version (Reads), Shadow Version (Writes)
¤ Decoupled reads and writes – No Locking required
¤  Shared across the computation workers in a Job Server
¤  Flag set whenever shadow value written - used by

communication workers to send values
¨  Remote Value Store

¤  Stores values for each in-neighbor of a vertex at a Job
Server.

¤ Uses a flag – set only if updated value is received – Allows
to skip vertices which aren’t updated in that iteration.

Example : SSSP using LFGraph

Server 2

Server 1

B
0

C
∞

D
∞

E
∞

ITERATION – 0

Example : SSSP using LFGraph

Server 2

Server 1

B
0

C
∞

D
∞

E
∞

ITERATION – 1

Read : 0

Read : ∞

Update value
Shadow

Publish Value of {A}

Example : SSSP using LFGraph

Server 2

Server 1

B
0

C
∞

D
2

E
2

ITERATION – 2

Locally Read A’s
value received in
previous iteration

and use that

Communication Overhead analysis

Computation Balance analysis – Real
World vs Ideal Power Law graphs

¨  Cheap partitioning
strategy suffices for real
world graphs

Communication Balance analysis

¨  Communication
imbalance à more
processing time

¨  If data sent by server
S1 is more than that of
S2, overall transfer time
increases

¨  LFGraph balances
communication load very
well since error bars are
small

PageRank runtime ignoring partition time

¨  PowerGraph couldn’t
load graph at small
cluster sizes

¨  LFGraph wins over the
best PowerGraph
version by a factor of
2x

PageRank runtime including partition time

¨  Improvement is most
over the intelligent
partitioning schemes of
PowerGraph

¨  8 servers – 4x to 100x
improvement, 32 servers
– 5x to 380x
improvement

¨  Intelligent partitioning
strategies have little
effect

Memory Footprint – LFGraph vs PowerGraph

¨  LFGraph stores only
in-links and publish lists
unlike PowerGraph.

¨  Memory footprint is 8x
to 12x lesser than
PowerGraph

Network Communication – LFGraph vs
PowerGraph

¨  There is first a quick rise
in the total communication
overhead

¨  But, as the total
communication overhead
plateaus out, the cluster
size increase takes over
dropping the per server
overhead

¨  LFGraph transfers about
4x less data per server
than PowerGraph

Computation vs Communication

¨  Computation time
decreases with increasing
number of servers

¨  Communication time curve
mirrors the per-server
network overhead

¨  Compute dominates
communicate in small
clusters

¨  After 16 servers, LFGraph
achieves a balance

Scaling to Larger Graphs

¨  Pregel – 300 servers,
800 workers

¨  LFGraph – 12 servers,
96 workers

¨  Runs SSSP benchmark

¨  Uses 10x less compute
power still gives better
performance. LFGraph
scales well

Pros

¨  Low computation and communication overheads J
¨  Low memory footprint J
¨  Highly Scalable J
¨  Computations and Communications are balanced J
¨  Cheap partitioning strategy suffices J

Cons/Comments/Discussion

¨  In case of failures, LFGraph restarts computation.
More efficient mechanisms for fault tolerance?

¨  Barrier Server – SPOF!!
¨  LFGraph requires that sufficient memory is

available in the cluster to store the graph and the
associated values. What if graph size is large? Or
such a cluster is unavailable?

¨  No techniques to give out partial results in case of
LFGraph. Every computation runs to completion.
What if there is a deadline?

Questions ?

