lvy: A

Read/Write

Peer-to-

Peer

-ile System

Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen

OSDI 2002

Motivation
Introduction
Challenges
Design
Implementation
Performance

Discussion

Overview

Votivation

e Existing file systems (e.g. NFS, xFS, Harp) exist
* Limitation: Centralization of data or metadata.

e Their solution: A P2P storage system

* Previous P2P systems (e.g. CFS, PAST)

 Limitation: Mostly read-only or allow only the
publisher to modity

e Their solution: Support multiple writers

lNtroauction

e |vy is a multi-user read/write peer-to-peer file
system.

* Uses DHash for storage.
 Does NOT rely on peer storage.
 Does NOT trust the users.

 Has NO centralized component.

Distributed Hashing

 DHash is a distributed peer-to-peer hash table
mapping keys to arbitrary values.

 DHash stores each key/value pair on a set of
Internet hosts determined by hashing the key.

Challenges

Consistency when there are multiple writers

P2P participants are unreliable. Cannot rely on locking.

Untrusted participants impose data integrity
challenges.

 Can you UNDO or IGNORE undesired
modifications?

It has to deal with network partitions and conftlicting
updates.

Design
e |vy uses a set of logs.

e |Linked list of immutable records.

» Contains changes to the file system
 Both metadata and data

* One per participant

 Records are appended to local log.

 Records are read from all logs.

Design

* Logs are arranged in views

* A view represents file system state

log-head
view block
[Logs are STOred N blocks / I 3 e 3 I :
\lo%-head
e Fach record is a block. . s
. NG /
—

log records

* Log-head block contains the most

rece ﬂt reco rd Figure 1: Example Ivy view and logs. Whlte boxes are DHash
content-hash blocks; gray boxes are public-key blocks.

* View block points to log-heads
from each participant

Design

* [ogs blocks are stored in DHT

log-head
e |ntertace: put(key, value), get(key) View""’yf
» Log-head is a mutable block B\
) | | e SR -
* |dentified by the public key of a N

log records

participant
Figure 1: Example Ivy view and logs. White boxes are DHash
content-hash blocks; gray boxes are public-key blocks.

* Immutable blocks are content-
hashed and cached by participants

Design

* Logs are stored in DHT
* Per-record replication and authentication

e Cryptographically signed for verification

* Each participant stores
 DHash key of log-head and prev record.

* |vy uses version vectors for ordering of logs

Field Use

prev DHash key of next oldest log record
head DHash key of log-head

seq per-log sequence number
timestamp | time at which record was created

version

version vector

Fields present in all Ivy log records.

Design

Each log record represents updates from a single file system
operation

Stores 160-bit i-numbers for identitying files and dirs
Stores attributes and permissions in log record.

 However, not used to enforce permissions. Relies on
encryption.

Logs are stored indefinitely for security reasons.

Design

Type Fields Meaning

Inode type (file, directory, or symlink), i-number, mode, owner create new inode
Write 1-number, offset, data write data to a file
Link i-number, i-number of directory, name create a directory entry
Unlink 1-number of directory, name remove a file

Rename 1-number of directory, name, i-number of new directory, new file name | rename a file
Prepare 1-number of directory, file name for exclusive operations
Cancel 1-number of directory, file name for exclusive operations
SetAttrs | i-number, changed attributes change file attributes
End none end of log

Summary of Ivy log record types.

* File system creation (mounts as NFS) ~ * File read operation
» Checks for Write records. Ignores SetAttrs

* Creates Inode record for root dir
records.

* File creation File attributes

* Creates Inode and Link records * Maintains: mtime, size, ctime, link count

* Lookup operation « Dir listing

* Checks for Unlink record. « Checks Link records. Ignores Unlink/Rename

Design

« Users create periodical directoryinode . _dirctory inode block
snapshots of the system o] T_E
—
 Incremental and persistent. e T
Stored in DHT .
file map< i—number:y e T ,,,..,data block
» Obviates the need for wen - | Bl
reading entire log. g —

e Only the participants in the
view are trusted. o of A

e System can recover from
malicious modifications
using logs.

Figure 2: Snapshot data structure. H (A) is the DHash content-

Design

 Provides NFS-like semantics

e close-to-open consistency

o writes are deferred until close()
« DHT allows replication

* In partitioned state, participants can independently modity files.
Allows concurrent updates.

o Exclusive updates done similar to two-phase commit (Prepare
record)

» Uses versioned logs to handle conflicts automatically.

e |Looks for concurrent version vectors.

Architecture

e lvy appears as a file
system (similar to NFS)

e Acts as loop-back NFS
server with in-kernel
client.

e Built as a distributed
application on top of DHT
+ Chord.

lvy agent DHash
private key Server |
Application
| Ilvy Server
[System Calls]
Y
NFS 3
Client [NFS 3]
Kernel

Chord

S =7

Finger Table at N8O 0 o

i fifi] N112 N16

0 96 80 +2 80 + 26

1 96

7 96 N96

396 | 80 +2¢ N32

4 96 80 + 29

5 112 A

6 16 86+2

NBo N __1\45

ith entry at peer with id # is first peer with id >= 7 + 2'(mod2")

 |Interface:
lookup(key) — IP

* O(log N)
messages per
lookup

Evaluation

e Workload
 Modified Andrew Benchmark (MAB)
e create dir tree,
e copy files into dir tree,
« walk dir tree and stat each file,
e read files,

 compile files

Evaluation

e Setup
e Block cache size: 512 blocks

« MAB and Ivy server run on GHz AMD Athlon
running FreeBSD 4.5

» DHash nodes are PlanetLab/RON nodes running
FreeBSD 4.5 on 733MHz PIII.

* No replication (incomplete)

Evaluation

» Configurations
* Local vs WAN
* Function of number of:
¢ Users,
* DHash nodes,

e Concurrent writers,

Evaluation

Phase Ivy (s) | NFS (s) Phase Ivy (s) | NFS (s)
Mkdir 0.6 0.5 Mkdir 11.2 4.8
Create/Write 6.6 0.8 Create/Write 89.2 42.0
Stat 0.6 0.2 Stat 65.6 47.8
Read 1.0 0.8 Read 65.8 55.6
Compile 10.0 53 Compile 144 .2 130.2
Total 18.8 7.6 Total 376.0 280.4

Table 3: Real-time in seconds to run the MAB with a single
Ivy log and all software running on a single machine. The NFS
column shows MAB run-time for NFS over a LAN.

Single User MAB on LAN

386 NFS RPCs
508 log updates

Table 4: MAB run-time with four DHash servers on a WAN.
The file system contains four logs.

Single User MAB on WAN
(DHT RTT 9, 16, 82 ms)

1 NFS req causes 3 log-head fetches
(total fetches: 3346, bounded: 82ms)
lvy inserts 8.8MB for 1.6MB data

SHA1 expensive lvy slower due to more n/w trips

Evaluation

800 — . . .
B T T T T T T T i /u')\ b
400 e soo L ' ' T T 700 + 3 =
— i] _ S ! !
g 350 2 8 600 | . :]
g 300 | . & 400 T T 2 ; !
8 3 ! : ® 500 - .
® I
& 250 b .) 4=
Py 300 | . T 400 T }
E 200 | . £ 5 *
T = : ! : 300 1 .
S 150 I - s 2001 I l 2 ‘
: < 200 + ° -
m m
< 100 7 < 100 | - =
> ol | ® 100 - .
o
0 ! ! ! ! ! ! ! 0 L L L L 0 1 1 1 1
4 6 8 10 12 14 16 8 16 24 32 1 2 3 4
Number of DHash servers Number of concurrent MABs

Number of logs (with one active log)

Figure 6: Average MAB run-time as the number of DHash
servers increases. The error bars indicate standard deviation
over different choices of PlanetLab hosts and different map-
pings of blocks to DHash servers.

Figure 7: Average run-time of MAB when several MABs are
running concurrently on different hosts on the Internet. The er-
ror bars indicate standard deviation over all the MAB runs.

Figure 5: MAB run-time as a function of the number of logs.
Only one participant is active.

Many logs, one

. Many Writers
writer Many DHash Servers y

(host to servers avg 2Nt

Little impact: logs because participants
are fetched in Runtime grows due fetch each other’s
log heads
parallel to rtf to servers

DIScuUsSsIon

* |vy does not reclaim log storage space

* |vy relies on logs to make updates. Discarding
logs to reclaim space can hurt data security.

* With storage getting cheaper now, this design
decision may not turn out to be too expensive

DIScuUsSsIon

e |vy provides automatic, application-specific conflict
resolution when partition heals.

* Uses application tools for resolution

* This may not work for all applications.

DIScuUsSsIon

* 160-bit I-numbers are generated randomly for files
iIndependently at each participant to minimize the
probability of collision.

e \What it the same I-numbers are allocated for
different files.

