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Motivation
• Existing file systems (e.g. NFS, xFS, Harp) exist 

• Limitation: Centralization of data or metadata. 

• Their solution: A P2P storage system 

• Previous P2P systems (e.g. CFS, PAST) 

• Limitation: Mostly read-only or allow only the 
publisher to modify 

• Their solution: Support multiple writers



Introduction
• Ivy is a multi-user read/write peer-to-peer file 

system. 

• Uses DHash for storage. 

• Does NOT rely on peer storage.  

• Does NOT trust the users. 

• Has NO centralized component.



Distributed Hashing

• DHash is a distributed peer-to-peer hash table 
mapping keys to arbitrary values. 

• DHash stores each key/value pair on a set of 
Internet hosts determined by hashing the key.



Challenges
• Consistency when there are multiple writers 

• P2P participants are unreliable. Cannot rely on locking. 

• Untrusted participants impose data integrity 
challenges. 

• Can you UNDO or IGNORE undesired 
modifications? 

• It has to deal with network partitions and conflicting 
updates.



Design
• Ivy uses a set of logs. 

• Linked list of immutable records. 

• Contains changes to the file system 

• Both metadata and data 

• One per participant 

• Records are appended to local log. 

• Records are read from all logs.



• Logs are arranged in views

• A view represents file system state 

• Logs are stored in blocks 

• Each record is a block. 

• Log-head block contains the most 
recent record 

• View block points to log-heads 
from each participant

Design

read/write peer-to-peer storage system; previous peer-
to-peer systems have supported read-only data or data
writeable by a single publisher. It describes how to de-
sign a distributed file system with useful integrity prop-
erties based on a collection of untrusted components. Fi-
nally, it explores the use of distributed hash tables as a
building-block for more sophisticated systems.
Section 2 describes Ivy’s design. Section 3 discusses

the consistency semantics that Ivy presents to applica-
tions. Section 4 presents tools for dealing with malicious
participants. Sections 5 and 6 describe Ivy’s implementa-
tion and performance. Section 7 discusses related work,
and Section 8 concludes.

2 Design
An Ivy file system consists of a set of logs, one log
per participant. A log contains all of one participant’s
changes to file system data and meta-data. Each partic-
ipant appends only to its own log, but reads from all
logs. Participants store log records in the DHash dis-
tributed hash system, which provides per-record repli-
cation and authentication. Each participant maintains a
mutable DHash record (called a log-head) that points to
the participant’s most recent log record. Ivy uses version
vectors [27] to impose a total order on log records when
reading from multiple logs. To avoid the expense of re-
peatedly reading the whole log, each participant main-
tains a private snapshot summarizing the file system state
as of a recent point in time.
The Ivy implementation acts as a local loop-back NFS

v3 [6] server, in cooperation with a host’s in-kernel NFS
client support. Consequently, Ivy presents file system se-
mantics much like those of an NFS v3 file server.

2.1 DHash
Ivy stores all its data in DHash [9]. DHash is a distributed
peer-to-peer hash table mapping keys to arbitrary val-
ues. DHash stores each key/value pair on a set of Internet
hosts determined by hashing the key. This paper refers to
a DHash key/value pair as a DHash block. DHash repli-
cates blocks to avoid losing them if nodes crash.
DHash ensures the integrity of each block with one of

two methods. A content-hash block requires the block’s
key to be the SHA-1 [10] cryptographic hash of the
block’s value; this allows anyone fetching the block to
verify the value by ensuring that its SHA-1 hash matches
the key. A public-key block requires the block’s key to be
a public key, and the value to be signed using the corre-
sponding private key. DHash refuses to store a value that
does not match the key. Ivy checks the authenticity of all
data it retrieves fromDHash. These checks prevent a ma-
licious or buggy DHash node from forging data, limiting
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Figure 1: Example Ivy view and logs. White boxes are DHash
content-hash blocks; gray boxes are public-key blocks.

it to denying the existence of a block or producing a stale
copy of a public-key block.
Ivy participants communicate only via DHash stor-

age; they don’t communicate directly with each other ex-
cept when setting up a new file system. Ivy uses DHash
content-hash blocks to store log records. Ivy stores the
DHash key of a participant’s most recent log record
in a DHash block called the log-head; the log-head is
a public-key block, so that the participant can update
its value without changing its key. Each Ivy participant
caches content-hash blocks locally without fear of us-
ing stale data, since content-hash blocks are immutable.
An Ivy participant does not cache other participants’ log-
head blocks, since they may change.
Ivy uses DHash through a simple interface:

put(key, value) and get(key). Ivy assumes
that, within any given network partition, DHash provides
write-read consistency; that is, if put(k, v) com-
pletes, a subsequent get(k) will yield v. The current
DHash implementation does not guarantee write-read
consistency; however, techniques are known which can
provide such a guarantee with high probability [19].
These techniques require that DHash replicate data and
update it carefully, and might significantly decrease
performance. Ivy operates best in a fully connected
network, though it has support for conflict detection
after operating in a partitioned network (see Section 3.4).
Ivy would in principle work with other distributed

hash tables, such as PAST [32], CAN [29], Tapestry [41],
or Kademlia [21].

2.2 Log Data Structure
An Ivy log consists of a linked list of immutable log
records. Each log record is a DHash content-hash block.
Table 1 describes fields common to all log records. The
prev field contains the previous record’s DHash key. A
participant stores the DHash key of its most recent log
record in its log-head block. The log-head is a public-
key block with a fixed DHash key, which makes it easy



• Logs blocks are stored in DHT 

• Interface: put(key, value), get(key) 

• Log-head is a mutable block 

• Identified by the public key of a 
participant 

• Immutable blocks are content-
hashed and cached by participants

Design
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tions. Section 4 presents tools for dealing with malicious
participants. Sections 5 and 6 describe Ivy’s implementa-
tion and performance. Section 7 discusses related work,
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it to denying the existence of a block or producing a stale
copy of a public-key block.
Ivy participants communicate only via DHash stor-

age; they don’t communicate directly with each other ex-
cept when setting up a new file system. Ivy uses DHash
content-hash blocks to store log records. Ivy stores the
DHash key of a participant’s most recent log record
in a DHash block called the log-head; the log-head is
a public-key block, so that the participant can update
its value without changing its key. Each Ivy participant
caches content-hash blocks locally without fear of us-
ing stale data, since content-hash blocks are immutable.
An Ivy participant does not cache other participants’ log-
head blocks, since they may change.
Ivy uses DHash through a simple interface:

put(key, value) and get(key). Ivy assumes
that, within any given network partition, DHash provides
write-read consistency; that is, if put(k, v) com-
pletes, a subsequent get(k) will yield v. The current
DHash implementation does not guarantee write-read
consistency; however, techniques are known which can
provide such a guarantee with high probability [19].
These techniques require that DHash replicate data and
update it carefully, and might significantly decrease
performance. Ivy operates best in a fully connected
network, though it has support for conflict detection
after operating in a partitioned network (see Section 3.4).
Ivy would in principle work with other distributed

hash tables, such as PAST [32], CAN [29], Tapestry [41],
or Kademlia [21].

2.2 Log Data Structure
An Ivy log consists of a linked list of immutable log
records. Each log record is a DHash content-hash block.
Table 1 describes fields common to all log records. The
prev field contains the previous record’s DHash key. A
participant stores the DHash key of its most recent log
record in its log-head block. The log-head is a public-
key block with a fixed DHash key, which makes it easy



• Logs are stored in DHT 

• Per-record replication and authentication 

• Cryptographically signed for verification

Design
Field Use
prev DHash key of next oldest log record
head DHash key of log-head
seq per-log sequence number
timestamp time at which record was created
version version vector

Table 1: Fields present in all Ivy log records.

for other participants to find.
A log record contains information about a single file

system modification, and corresponds roughly to an NFS
operation. Table 2 describes the types of log records and
the type-specific fields each contains.
Log records contain the minimum possible informa-

tion to avoid unnecessary conflicts from concurrent up-
dates by different participants. For example, a Write
log record contains the newly written data, but not the
file’s new length or modification time. These attributes
cannot be computed correctly at the time the Write
record is created, since the true state of the file will only
be known after all concurrent updates are known. Ivy
computes that information incrementally when travers-
ing the logs, rather than storing it explicitly as is done in
UNIX i-nodes [30].
Ivy records file owners and permission modes, but

does not use those attributes to enforce permissions. A
user who wishes to make a file unreadable should instead
encrypt the file’s contents. A user should ignore the logs
of people who should not be allowed to write the user’s
data.
Ivy identifies files and directories using 160-bit i-

numbers. Log records contain the i-number(s) of the files
or directories they affect. Ivy chooses i-numbers ran-
domly to minimize the probability of multiple partici-
pants allocating the same i-number for different files. Ivy
uses the 160-bit i-number as the NFS file handle.
Ivy keeps log records indefinitely, because they may

be needed to help recover from a malicious participant
or from a network partition.

2.3 Using the Log
For the moment, consider an Ivy file system with only
one log. Ivy handles non-updating NFS requests with a
single pass through the log. Requests that cause modifi-
cation use one or more passes, and then append one or
more records to the log. Ivy scans the log starting at the
most recently appended record, pointed to by the log-
head. Ivy stops scanning the log once it has gathered
enough data to handle the request.
Ivy appends a record to a log as follows. First, it cre-

ates a log record containing a description of the update,

typically derived from arguments in the NFS request.
The new record’s prev field is the DHash key of the
most recent log record. Then, it inserts the new record
into DHash, signs a new log-head that points to the new
log record, and updates the log-head in DHash.
The following text describes how Ivy uses the log to

perform selected operations.
File system creation. Ivy builds a new file system by

creating a new log with an End record, an Inode record
with a random i-number for the root directory, and a log-
head. The user then mounts the local Ivy server as an
NFS file system, using the root i-number as the NFS root
file handle.
File creation.When an application creates a new file,

the kernel NFS client code sends the local Ivy server an
NFS CREATE request. The request contains the direc-
tory i-number and a file name. Ivy appends an Inode
log record with a new random i-number and a Link
record that contains the i-number, the file’s name, and the
directory’s i-number. Ivy returns the new file’s i-number
in a file handle to the NFS client. If the application then
writes the file, the NFS client will send a WRITE request
containing the file’s i-number, the written data, and the
file offset; Ivy will append a Write log record contain-
ing the same information.
File name lookup. System calls such as open() that

refer to file names typically generate NFS LOOKUP re-
quests. A LOOKUP request contains a file name and a di-
rectory i-number. Ivy scans the log to find a Link record
with the desired directory i-number and file name, and
returns the file i-number. However, if Ivy first encoun-
ters a Unlink record that mentions the same directory
i-number and name, it returns an NFS error indicating
that the file does not exist.
File read. An NFS READ request contains the file’s i-

number, an offset within the file, and the number of bytes
to read. Ivy scans the log accumulating data from Write
records whose ranges overlap the range of the data to be
read, while ignoring data hidden by SetAttr records
that indicate file truncation.
File attributes. Some NFS requests, including

GETATTR, require Ivy to include file attributes in the
reply. Ivy only fully supports the file length, file mod-
ification time (“mtime”), attribute modification time
(“ctime”), and link count attributes. Ivy computes these
attributes incrementally as it scans the log. A file’s length
is determined by either the write to the highest offset
since the last truncation, or by the last truncation. Mtime
is determined by the timestamp in the most recent rel-
evant log record; Ivy must return correct time attributes
because NFS client cache consistency depends on it. Ivy
computes the number of links to a file by counting the
number of relevant Link records not canceled by Un-
link and Rename records.

Field Use
prev DHash key of next oldest log record
head DHash key of log-head
seq per-log sequence number
timestamp time at which record was created
version version vector

Table 1: Fields present in all Ivy log records.
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with a random i-number for the root directory, and a log-
head. The user then mounts the local Ivy server as an
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the kernel NFS client code sends the local Ivy server an
NFS CREATE request. The request contains the direc-
tory i-number and a file name. Ivy appends an Inode
log record with a new random i-number and a Link
record that contains the i-number, the file’s name, and the
directory’s i-number. Ivy returns the new file’s i-number
in a file handle to the NFS client. If the application then
writes the file, the NFS client will send a WRITE request
containing the file’s i-number, the written data, and the
file offset; Ivy will append a Write log record contain-
ing the same information.
File name lookup. System calls such as open() that

refer to file names typically generate NFS LOOKUP re-
quests. A LOOKUP request contains a file name and a di-
rectory i-number. Ivy scans the log to find a Link record
with the desired directory i-number and file name, and
returns the file i-number. However, if Ivy first encoun-
ters a Unlink record that mentions the same directory
i-number and name, it returns an NFS error indicating
that the file does not exist.
File read. An NFS READ request contains the file’s i-

number, an offset within the file, and the number of bytes
to read. Ivy scans the log accumulating data from Write
records whose ranges overlap the range of the data to be
read, while ignoring data hidden by SetAttr records
that indicate file truncation.
File attributes. Some NFS requests, including

GETATTR, require Ivy to include file attributes in the
reply. Ivy only fully supports the file length, file mod-
ification time (“mtime”), attribute modification time
(“ctime”), and link count attributes. Ivy computes these
attributes incrementally as it scans the log. A file’s length
is determined by either the write to the highest offset
since the last truncation, or by the last truncation. Mtime
is determined by the timestamp in the most recent rel-
evant log record; Ivy must return correct time attributes
because NFS client cache consistency depends on it. Ivy
computes the number of links to a file by counting the
number of relevant Link records not canceled by Un-
link and Rename records.

• Each participant stores 

• DHash key of log-head and prev record. 

• Ivy uses version vectors for ordering of logs



Design

• Each log record represents updates from a single file system 
operation 

• Stores 160-bit i-numbers for identifying files and dirs 

• Stores attributes and permissions in log record. 

• However, not used to enforce permissions. Relies on 
encryption. 

• Logs are stored indefinitely for security reasons.



Design

• File system creation (mounts as NFS) 

• Creates Inode record for root dir 

• File creation 

• Creates Inode and Link records 

• Lookup operation 

• Checks for Unlink record.

Type Fields Meaning
Inode type (file, directory, or symlink), i-number, mode, owner create new inode
Write i-number, offset, data write data to a file
Link i-number, i-number of directory, name create a directory entry
Unlink i-number of directory, name remove a file
Rename i-number of directory, name, i-number of new directory, new file name rename a file
Prepare i-number of directory, file name for exclusive operations
Cancel i-number of directory, file name for exclusive operations
SetAttrs i-number, changed attributes change file attributes
End none end of log

Table 2: Summary of Ivy log record types.

Directory listings. Ivy handles READDIR requests
by accumulating all file names from relevant Link log
records, taking more recent Unlink and Rename log
records into account.

2.4 User Cooperation: Views

When multiple users write to a single Ivy file system,
each source of potentially concurrent updates must have
its own log; this paper refers to such sources as partici-
pants. A user who uses an Ivy file system from multiple
hosts concurrently must have one log per host.
The participants in an Ivy file system agree on a view:

the set of logs that comprise the file system. Ivy makes
management of shared views convenient by providing
a view block, a DHash content-hash block containing
pointers to all log-heads in the view. A view block also
contains the i-number of the root directory. A view block
is immutable; if a set of users wants to form a file system
with a different set of logs, they create a new view block.
A user names an Ivy file system with the content-hash

key of the view block; this is essentially a self-certifying
pathname [23]. Users creating a new file system must
exchange public keys in advance by some out-of-band
means. Once they know each other’s public keys, one of
them creates a view block and tells the other users the
view block’s DHash key.
Ivy uses the view block key to verify the view block’s

contents; the contents are the public keys that name and
verify the participants’ log-heads. A log-head contains
a content-hash key that names and verifies the most re-
cent log record. It is this reasoning that allows Ivy to ver-
ify it has retrieved correct log records from the untrusted
DHash storage system. This approach requires that users
exercise care when initially using a file system name;
the name should come from a trusted source, or the user
should inspect the view block and verify that the public
keys are those of trusted users. Similarly, when a file sys-
tems’ users decide to accept a new participant, they must
all make a conscious decision to trust the new user and to

adopt the new view block (and newly named file system).
Ivy’s lack of support for automatically adding new users
to a view is intentional.

2.5 Combining Logs

In an Ivy file system with multiple logs, a participant’s
Ivy server consults all the logs to find relevant infor-
mation. This means that Ivy must decide how to order
the records from different logs. The order should obey
causality, and all participants with the same view should
choose the same order. Ivy orders the records using a ver-
sion vector [27] contained in each log record.
When an Ivy participant generates a new log record,

it includes two pieces of information that are later used
to order the record. The seq field contains a numeri-
cally increasing sequence number; each log separately
numbers its records from zero. The version vector field
contains a tuple U:V for each log in the view (including
the participant’s own log), summarizing the participant’s
most recent knowledge of that log. U is the DHash key
of the log-head of the log being described, and V is the
DHash key of that log’s most recent record. In the follow-
ing discussion, a numeric V value refers to the sequence
number contained in the record pointed to by a tuple.
Ivy orders log records by comparing the records’ ver-

sion vectors. For example, Ivy considers a log record
with version vector (A:5 B:7) to be earlier in time than
a record with version vector (A:6 B:7): the latter vec-
tor implies that its creator had seen the record with (A:5
B:7). Two version vectors u and v are comparable if and
only if u < v or v < u or u = v. Otherwise, u and v
are concurrent. For example, (A:5 B:7) and (A:6 B:6) are
concurrent.
Simultaneous operations by different participants will

result in equal or concurrent version vectors. Ivy orders
equal and concurrent vectors by comparing the public
keys of the two logs. If the updates affect the same file,
perhaps due to a partition, the application may need to
take special action to restore consistency; Section 3 ex-
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End none end of log

Table 2: Summary of Ivy log record types.
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• File read operation 

• Checks for Write records. Ignores SetAttrs 
records. 

• File attributes 

• Maintains: mtime, size, ctime, link count 

• Dir listing 

• Checks Link records. Ignores Unlink/Rename



Design
• Users create periodical 

snapshots of the system 

• Incremental and persistent. 
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Figure 2: Snapshot data structure.H(A) is the DHash content-
hash of A.

plores Ivy’s support for application-specific conflict res-
olution.
Ivy could have used a simpler method of ordering log

records, such as a Lamport clock [17]. Version vectors
contain more precise information than Lamport clocks
about causality; Ivy uses that information to help fix con-
flicting updates after a partition. Version vectors help pre-
vent a malicious participant from retroactively changing
its log by pointing its log-head at a newly-constructed
log; other participants’ version vectors will still point to
the old log’s records. Finally, version vectors from one
log could be used to help repair another log that has been
damaged.

2.6 Snapshots

Each Ivy participant periodically constructs a private
snapshot of the file system in order to avoid traversing
the entire log. A snapshot contains the entire state of the
file system. Participants store their snapshots in DHash to
make them persistent. Each participant has its own logi-
cally private snapshot, but the fact that the different snap-
shots have largely identical contents means that DHash
automatically shares their storage.

2.6.1 Snapshot Format

A snapshot consists of a file map, a set of i-nodes, and
some data blocks. Each i-node is stored in its own DHash
block. An i-node contains file attributes as well as a list
of DHash keys of blocks holding the file’s contents; in
the case of a directory, the content blocks hold a list of
name/i-number pairs. The file map records the DHash
key of the i-node associated with each i-number. All
of the blocks that make up a snapshot are content-hash
blocks. Figure 2 illustrates the snapshot data structure.

2.6.2 Building Snapshots

In ordinary operation Ivy builds each new snapshot in-
crementally. It starts by fetching all log records (from all
logs in the view) newer than the previous snapshot. It
traverses these new records in temporal order. For each
i-number that occurs in the new log records, Ivy main-
tains an i-node and a copy of the file contents. Ivy reads
the initial copy of the i-node and file contents from the
previous snapshot, and performs the operation indicated
by each log record on this data.
After processing the new log records, Ivy writes the

accumulated i-nodes and file contents to DHash. Then it
computes a new file map by changing the entries corre-
sponding to changed i-nodes and appending new entries.
Ivy creates a snapshot block that contains the file map
and the following meta-data: a pointer to the view upon
which the snapshot is based, a pointer to the previous
snapshot, and a version vector referring to the most re-
cent record from each log that the snapshot incorporates.
Ivy stores the snapshot block in DHash under its content-
hash, and updates the participant’s log-head to refer to
the new snapshot.
A new user must either build a snapshot from scratch,

starting from the earliest record in each log, or copy an-
other (trusted) user’s snapshot.

2.6.3 Using Snapshots

When handling an NFS request, Ivy first traverses log
records newer than the snapshot; if it cannot accumulate
enough information to fulfill the request, Ivy finds the
missing information in the participant’s latest snapshot.
Ivy finds information in a snapshot based on i-number.

3 Application Semantics
This section describes the file system semantics that Ivy
provides to applications, focusing primarily on the ways
in which Ivy’s semantics differ from those of an ordi-
nary NFS server. Sections 3.1, 3.2, and 3.3 describe Ivy’s
semantics when the network provides full connectivity.
Sections 3.4 and 3.5 describewhat happenswhen the net-
work partitions and then merges.

3.1 Cache Consistency
In general, an update operation that one Ivy participant
has completed is immediately visible to operations that
other participants subsequently start. The exceptions are
that Ivy can’t enforce this notion of consistency during
network partitions (see Section 3.4), and that Ivy pro-
vides close-to-open consistency for file data (see below).
Most Ivy updates are immediately visible because 1) an
Ivy server performing an update waits until DHash has
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just before the partition healed. For example,

% ./lc -v /ivy/BXz4+udjsQm4tX63UR9w71SNP0c
before: +WzW8s7fTEt6pehaB7isSfhkc68
partition1: l3qLDU5icVMRrbLvhxuJ1WkNvWs
partition2: JyCKgcsAjZ4uttbbtIX9or+qEXE
% cat /ivy/+WzW8s7fTEt6pehaB7isSfhkc68/file1
original content of file1
% cat /ivy/l3qLDU5icVMRrbLvhxuJ1WkNvWs/file1
original content of file1, changed
append on first partition
% cat /ivy/JyCKgcsAjZ4uttbbtIX9or+qEXE/file1
original content of file1
append on second partition

In simple cases, a user could simply examine the ver-
sions of the file and merge them by hand in a text edi-
tor. Application-specific resolvers such as those used by
Coda [14, 16] could be used for more complex cases.

4 Security and Integrity

Since Ivy is intended to support distributed users with
arms-length trust relationships, it must be able to recover
from malicious participants. The situation we envision is
that a participant’s bad behavior is discovered after the
fact. Malicious behavior is assumed to consist of the par-
ticipant using ordinary file system operations to modify
or delete data. One form of malice might be that an out-
sider breaks into a legitimate user’s computer and modi-
fies files stored in Ivy.
To cope with a good user turning bad, the other par-

ticipants can either form a new view that excludes the
bad participant’s log, or form a view that only includes
the log records before a certain point in time. In either
case the resulting file system may be missing important
meta-data. Upon user request, Ivy’s ivycheck tool will
detect and fix certain meta-data inconsistencies. ivy-
check inspects an existing file system, finds missing
Link and Inode meta-data, and creates plausible re-
placements in a new fix log. ivycheck can optionally
look in the excluded log in order to find hints about what
the missing meta-data should look like.

5 Implementation
Ivy is written in C++ and runs on FreeBSD. It uses the
SFS tool-kit [22] for event-driven programming and NFS
loop-back server support.
Ivy is implemented as several cooperating parts, illus-

trated in Figure 4. Each participating host runs an Ivy
server which exposes Ivy file systems as locally-mounted
NFS v3 file systems. A file system name encodes the
DHash key of the file system’s view block, for ex-
ample, /ivy/9RYBbWyeDVEQnxeL95LG5jJjwa4.
The Ivy server does not hold private keys; instead, each
participant runs an agent to hold its private key, and the
Ivy server asks the participant’s local agent program to
sign log heads. The Ivy server acts as a client of a local
DHash server, which consults other DHash servers scat-
tered around the network. The Ivy server also keeps a
LRU cache of content-hash blocks (e.g. log records and
snapshot blocks) and log-heads that it recently modified.

6 Evaluation
This section evaluates Ivy’s performance 1) in a purely
local configuration, 2) over a WAN, 3) as a function of
the number of participants, 4) as a function of the num-
ber of DHash nodes, 5) as a function of the number of
concurrent writers, and 6) as a function of the snapshot
interval. The main goal of the evaluation is to understand
the costs of Ivy’s design in terms of network latency and
cryptographic operations.
Ivy is configured to construct a snapshot every 20

new log records, or when 60 seconds have elapsed since
the construction of the last snapshot. Unless otherwise
stated, Ivy’s block cache size is 512 blocks. DHash nodes
are PlanetLab [1] nodes, running Linux 2.4.18 on 1.2
GHz Pentium III CPUs, and RON [2] nodes, running
FreeBSD 4.5 on 733MHz Pentium III CPUs. DHash was
configured with replication turned off, since the replica-
tion implementation is not complete; replication would
probably decrease performance significantly. Unless oth-
erwise stated, this section reports results averaged over
five runs.
The workload used to evaluate Ivy is the Modified An-

drew Benchmark (MAB), which consists of five phases:
(1) create a directory hierarchy, (2) copy files into these
directories, (3) walk the directory hierarchy while read-
ing attributes of each file, (4) read the files, and (5) com-
pile the files into a program. Unless otherwise stated, the
MAB and the Ivy server run on a 1.2 GHz AMD Athlon
computer running FreeBSD 4.5 at MIT.

6.1 Single User MAB
Table 3 shows Ivy’s performance on the phases of the
MAB for a file system with just one log. All the soft-
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Phase Ivy (s) NFS (s)
Mkdir 0.6 0.5

Create/Write 6.6 0.8
Stat 0.6 0.2
Read 1.0 0.8
Compile 10.0 5.3
Total 18.8 7.6

Table 3: Real-time in seconds to run the MAB with a single
Ivy log and all software running on a single machine. The NFS
column shows MAB run-time for NFS over a LAN.

Phase Ivy (s) NFS (s)
Mkdir 11.2 4.8

Create/Write 89.2 42.0
Stat 65.6 47.8
Read 65.8 55.6
Compile 144.2 130.2
Total 376.0 280.4

Table 4: MAB run-time with four DHash servers on a WAN.
The file system contains four logs.

ware (the MAB, Ivy, and a single DHash server) ran
on the same computer. To put the Ivy performance in
perspective, Table 3 also shows MAB performance over
NFS; the client and NFS server are connected by a 100
Mbit LAN. Note that this comparison is unfair to NFS,
since NFS involved network communication while the
Ivy benchmark did not.

The following analysis explains Ivy’s 18.8 seconds of
run-time. The MAB produces 386 NFS RPCs that mod-
ify the Ivy log. 118 of these are either MKDIR or CRE-
ATE, which require two log-head writes to achieve atom-
icity. 119 of the 386 RPCs are COMMITs or CLOSEs
that require Ivy to flush written data to the log. Another
133 RPCs are synchronous WRITEs generated by the
linker. Overall, the 386 RPCs caused Ivy to update the
log-head 508 times. Computing a public-key signature
uses about 14.2 milliseconds (ms) of CPU time, for a to-
tal of 7.2 seconds of CPU time.

The remaining time is spent in the Ivy server (4.9 sec-
onds), the DHash server (2.9 seconds), and in the pro-
cesses that MAB invokes (2.6 seconds). Profiling indi-
cates that the most expensive operations in the Ivy and
DHash servers are SHA-1 hashes and memory copies.

The MAB creates a total of 1.6 MBytes of file data.
Ivy, in response, inserts a total of 8.8 MBytes of log and
snapshot data into DHash.

6.2 Performance on a WAN
Table 4 shows the time for a single MAB instance with
four DHash servers on a WAN. One DHash server runs
on the same computer that is running the MAB. The av-
erage network round-trip times to the other three DHash
servers are 9, 16, and 82 ms. The file system contains
four logs. The benchmark only writes one of the logs,
though the other three log-heads are consulted to make
sure operations see the most up-to-date data. The four
log-heads are stored on three DHash servers. The log-
head that is being written to is stored on the DHash
server with a round-trip time of 9 ms from the local ma-
chine. One log-head is stored on the server with a round-
trip time of 82 ms from the local machine. The DHash
servers’ node IDs are chosen so that each is responsible
for roughly the same number of blocks.
A typical NFS request requires Ivy to fetch the three

other log-heads from DHash; this involves just one
DHash network RPC per log-head. Ivy issues the three
RPCs in parallel, so the time for each log-head check is
governed by the largest round-trip time of 82 ms. The
MAB causes Ivy to retrieve log-heads 3,346 times, for a
total of 274 seconds. This latency dominates Ivy’s WAN
performance.
The remaining 102 seconds of MAB run-time are used

in four ways. Running the MAB on a LAN takes 22 sec-
onds, mostly in the form of CPU time. Ivy writes its log-
head to DHash 508 times; each write takes 9 ms of net-
work latency, for a total of 5 seconds. Ivy inserts 1,003
log records, some of them concurrently. The average in-
sertion takes 54 ms (27 ms for the Chord [37] lookup,
then another 27 ms for the DHash node to acknowledge
receipt). This accounts for roughly 54 seconds. Finally,
the local computer sends and receives 7.0 MBytes of data
during theMAB run. This accounts for the remaining run
time. During the experiment Ivy also inserts 358 DHash
blocks while updating its snapshot; because Ivy doesn’t
wait for these inserts, they contribute little to the total run
time.
Table 4 also shows MAB performance over wide-area

NFS. The round-trip time between the NFS client and
server is 79 ms, which is roughly the time it takes Ivy to
fetch all the log-heads. We use NFS over UDP because
it is faster for this benchmark than FreeBSD’s NFS over
TCP implementation. Ivy is slower than NFS because Ivy
operations often require more network round-trips; for
example, some NFS requests require Ivy to both fetch
and update log-heads, requiring two round-trips.

6.3 Many Logs, One Writer
Figure 5 shows how Ivy’s performance changes as the
number of logs increases. Other than the number of logs,
this experiment is identical to the one in the previous sec-
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Figure 5 shows how Ivy’s performance changes as the
number of logs increases. Other than the number of logs,
this experiment is identical to the one in the previous sec-
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Figure 5: MAB run-time as a function of the number of logs.
Only one participant is active.
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Figure 6: Average MAB run-time as the number of DHash
servers increases. The error bars indicate standard deviation
over different choices of PlanetLab hosts and different map-
pings of blocks to DHash servers.

tion. The number of logs ranges from 4 to 16, but only
one participant executes theMAB— the other logs never
change. Figure 5 reports results averaged over three runs.
The number of logs has relatively little impact on run-

time because Ivy fetches the log-heads in parallel. There
is a slight increase caused by the fact that the version
vector in each log record has one 44-byte entry per par-
ticipant.

6.4 Many DHash Servers
Figure 6 shows the averages and standard deviations of
Ivy’s MAB performance as the number of DHash servers
increases from 8 to 32. For each number of servers we
perform ten experimental runs. For each run, all but one
of the DHash servers are placed on randomly chosen
PlanetLab hosts (from a pool of 32 hosts); new log-head
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Figure 7: Average run-time of MAB when several MABs are
running concurrently on different hosts on the Internet. The er-
ror bars indicate standard deviation over all the MAB runs.

public keys are also used to ensure the log-heads are
placed on random DHash servers. One DHash server,
the Ivy server, and the MAB always execute on a host
at MIT. The round-trip times from the host at MIT to the
PlanetLab hosts average 32 ms, with a minimum of 1 ms,
a maximum of 78 ms, and a standard deviation of 27 ms.
There are four logs in total; only one of them changes.
The run-time in Figure 6 grows because more Chord

messages are required to find each log record block in
DHash. An average of 2.3, 2.9, 3.3, and 3.8 RPCs are re-
quired for 8, 16, 24, and 32 DHash servers, respectively.
These numbers include the final DHash RPC as well as
Chord lookup RPCs.
The high standard deviation in Figure 6 is due to the

fact that the run-time is dominated by the round-trip
times to the four particular DHash servers that store the
log-heads. This means that adding more DHash servers
doesn’t reduce the variation.

6.5 Many Writers
Figure 7 shows the effect of multiple active writers. We
perform three experiments for each numberN of partic-
ipants; each experiment involves one MAB running con-
currently on each ofN different Ivy hosts on the Internet,
a file system with four logs, new log-head public keys,
and 32 DHash servers. Each MAB run uses its own di-
rectory in the Ivy file system. Each data point shows the
average and standard deviation of MAB run-time over
the 3N MAB executions.
The run-time increases with the number of active par-

ticipants because each has to fetch the others’ newly ap-
pended log records from DHash. The run-time increases
relatively slowly because Ivy fetches records from the
different logs in parallel. The deviation in run-times is
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the Ivy server, and the MAB always execute on a host
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a maximum of 78 ms, and a standard deviation of 27 ms.
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fact that the run-time is dominated by the round-trip
times to the four particular DHash servers that store the
log-heads. This means that adding more DHash servers
doesn’t reduce the variation.

6.5 Many Writers
Figure 7 shows the effect of multiple active writers. We
perform three experiments for each numberN of partic-
ipants; each experiment involves one MAB running con-
currently on each ofN different Ivy hosts on the Internet,
a file system with four logs, new log-head public keys,
and 32 DHash servers. Each MAB run uses its own di-
rectory in the Ivy file system. Each data point shows the
average and standard deviation of MAB run-time over
the 3N MAB executions.
The run-time increases with the number of active par-

ticipants because each has to fetch the others’ newly ap-
pended log records from DHash. The run-time increases
relatively slowly because Ivy fetches records from the
different logs in parallel. The deviation in run-times is
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Discussion

• Ivy does not reclaim log storage space 

• Ivy relies on logs to make updates. Discarding 
logs to reclaim space can hurt data security. 

• With storage getting cheaper now, this design 
decision may not turn out to be too expensive



Discussion

• Ivy provides automatic, application-specific conflict 
resolution when partition heals. 

• Uses application tools for resolution 

• This may not work for all applications.



Discussion

• 160-bit i-numbers are generated randomly for files 
independently at each participant to minimize the 
probability of collision. 

• What if the same i-numbers are allocated for 
different files.


