GentleRain: Cheap and Scalable
Causal Consistency with Physical
Clocks

Jiaging Du | Calin lorgulescu | Amitabha Roy | Willy Zwaenepoel
Ecole polytechnique fédérale de Lausanne (EPFL)

Published in the Proceedings of the SEBQCM Symposium on Cloud Computing,

Presented By: Aditya Rastogi

What is Causal Consistency 7

— —
Eventual Causal Sequential
Consistency Consistency Consistency

Stronger consistency Level

* From the point of view of a client : If a certain version of a data item is
visible, then all of its causal dependencies (all versions that happen
before this version) are also visible.

e Operations that are causally related (happens before relationship)
are seen by every client in the same order.

Example

W(K1, 33)

Client A _I"t\"'-k..~~ >

\ SSW(K2, 55)

| >
Client B A| \r\"~-~\

~
R(K1) returns 33

S
~-~
w

Client C [[SESpm—— [>

W(K1, 22)

R(K1) returns R(K2) returns 55 R(K1) must return 33
22 or 33

» Social Network Updates

* Order of display of unrelated status updates does not matter. (concurrent events)

 But Comments in response to a post must not appear beofore that post! (causally
related events)

GentleRain

* A Geo-Replicated data store
* Provides Causal Consistency

* Motivation: No need for dependency check messages, use a single
physical timestamp instead

* Benefit: Achieve greater throughput
* Tradeoff: Delayed visibility of updates at remote replicas

System Model

* N partitions containing keys assigned by hash value

e Each partition replicated by M replicas (datacenters)

 Servers with physical clocks with monotonically increasing timestamps
* Put(key,val) : Create / modify key

e Get(key) : Get value for the key

* Sn_read(keys) : Returns a causally consistent snapshot containing values for
all the keys.

* Ro_trx(keys) : Returns values for a causally consistent read only
transaction. Values previously seen by the client must also be returned

GentleRain Protocol

* Timestamp all updates with physical clock value at originating server
* Local updates are immediately visible

* Remote updates are visible only when older than a global timestamp
determined by Global Stable Timestamp (GST)

* All updates across different partitions and replicas totally ordered by
update timestamp

Client and Server States

* Client
 Dependency Time : latest update timestamp across all items accessed by client
: Client’s knowledge of Global Stable Time.
* Server

* Version Vector V1I},"*[1.. M] : Physical timestamp vector at mt" replica of nt"
partition(key).
Local Stable Time LST," : Minimum element of V1" at a partition.

Global Stable Time GST, : Lower bound of minimum LST of all
partitions(keys) within the datacenter.

Each item maintained as a tuple <key, value, update timestamp, source id>,
list of versions maintained.

Messages sent out in update timestamp and clock order.

Understanding GST

* Intuitively, serves as a cutoff time for causally consistent reads.
* All remote reads are return values with update timestamp < GST

 Guarantees that if at a certain partition the GST value is T, then all
partitions(keys) have received all updates with update timestamp less
than GST.

Get Operation (Non-Local Reads)

GST, =5 GST, := 5(max(GST,, GST,"))
DT. =1 DT.: = 2(max(DT,, ut))
Client
get(k,GST, = 5) (b,ut = 2,GST," = 5)
R1
k GST,* = 4
(#1,a,2) GST™ := 5(max(GST,, GST,™))
(#2,b,6)
R2

R3

Get Operation (Local Reads)

GST, =5 GST, := 5(max(GST,, GST,"))
DT. =3 DT, := 6(max(DT,, ut))

Client

get(k,GST. = 5) (val = b,ut = 6,GST,* = 5)

R1/Source
k GST" = 4
(#1,a,2) GST;" := 5(max(GST,, GST,™))
(#2,b,6)

R2 L |

R3

Put Operation

GST, = 2
DT. =3 DT, =5 (max(DT,,ut)) GST, =3
Client
put(k,c,DT, = 3)
R1/Source
(#1,a,2) — — _ _
local clock =1 local clock = 5>3 (val = a,ut = 3,
(#2,b,4) wait vvm = [5(ic), 7,6] GSTy" = 4)
[4,7,6] addkey(#3,c,ut = 5(lc))
R2
#2,b,7 _
4,7,6] addkey(#3,c,ut = 5)
R3
(#1,3,3) VVm = [ut = 5,7,6]
(#2,b,6) addkey(#3,c,ut = 5)

[4,7,6]

Snapshot Read (Across Partitions)

GST,. =5 GST, := 6(max(GST,, gst'))
DT, =3 DT, := 3(max(DT,, ut"))
Client
sn_read([k, j], GST. = 5) ([a, A],ut’ = 3,gst’ =5)
P1
k GST,* =4 GST{* := 5(max(GST,, GST)) ut’: = 3(max(ut, = 3,uty, = 2))
(#1,a,3) st:= GSTy* =5 gst': = 6(max(5,6))
(#2,b,6) (A,ut = 2,GST™ = 6)
P2
j GST™ = 6 GST!™: = 6(max(6,5))
(#1,A,2)
(#2,B,6)
P3
replicas for

both k,j

Read-Only Transactions

GST,. =5 GST, := max(GST,, gst")
DT, =3 DT, := max(DT,, ut")
Client -
ro_trx([k,j], GST, = 5,DT, = 3) ! ///
i ,»”’
1.~
P1 -
k GST* = 2 DT, —GST* < a(=1) GST]* = 4i “~._ Execute Snaphsot Read Protocol
(#1,a,3) . " | TSl
(#2.b.6) wait for GST;" to T .
J Execute RO transaction protocol as per COPS
(#1,A,2)
(#2,B,6)
P3
replicas for

both k,j

GST Derivation

* GST,* at a server is the lower bound on the minimum LST;]* of all

partitions(keys) within the same datacenter. i.e.
GST," = min(LST,")Vk €N

* Periodically computed for partitions(keys) within same datacenter.

* For efficient derivation of GST,* at a datacenter, spanning tree built
over all partitions in the datacenter.

* Leaf nodes push GST.]* up the tree, root communicates the min
GST," back.

* Message complexity = O(N) , time taken =2 x RTT * logN .

Heartbeats

* If a partition (key) does not receive frequent updates its V1, will not
advance — LST,* will not advance = GST," will not advance !

* To solve this :
* Periodically update VV'l,]"™ at each partition(key)
* Set VI,)*|m] := local clock at replica m

* Broadcast local clock to all replicas, using piggybacking on failure
detector heartbeats.

At replica k +# mset VI,]"| k| := clock from heartbeat of replica k

Garbage Collection

* Partitions within the same datacenter periodically exchange snapshot
timestamp of oldest active snapshot read.

* If a partition does not have any active snapshot read, it sends out GST.

* Partitions choose minimum timestamp of all such snapshot
timestamps for garbage collection.

* Keep only the latest item versions just before this timestamp, discard
earlier versions.

Conflict Detection

* Remember, even in causal ordering, you can have concurrent events !

* Conflict happens when causally unrelated updates to same key are
done at two different replicas.

* Updates that need to be replicated carry update time and source
replica id of previous version.

e Replicate operation at a server applied only if the previous version at
server = previous version in replicate message.

* Otherwise conflict reported to client which dictates the order of
conflicting updates in a consistent manner across servers.

Why Physical Clocks?

e System can be causally consistent even if we use logical clocks.
* However, logical clocks only updated when update is made.
* But Partitions(keys) can receive updates at different frequencies.

* If a partition (key) does not receive frequent updates its V1, will not
advance — LST,* will not advance — GST," will not advance !

* Hence, loosely synced (using NTP) physical clocks used as timestamps
for updates.

Results

e System Evaluated in terms of throughput and remote update visibility

* Compared to data stores providing Eventual Consistency and Causal
Consistency

* Each partition replicated at three Amazon EC2 datacenters — Oregon
(0), Ireland (l) and Virginia(V)

Results - Throughput

1000

2000 T r r r r
—B8— Eventual Consistency

—B— Eventual Consistency

—8— COPS/Eiger 900 | —e— COPS/Eiger \‘

—d— GentleRain —d— GentleRain
s I 800]
@ 1500 b
0 @ 700 } V4
a a =
()) 600 |
x x
g 1000 | g 500
-§ -§ 400 |
2 500 |
e B e
[= = 200 |

100
0 L L I A 1 L L 0 L L I A 1 L L
1 4 8 12 16 20 24 28 32 1 4 8 12 16 20 24 28 32
Number of Partitions Number of Partitions

* Left: Read a randomly selected item from every partition and update a
randomly selected item at one partition.
* Much better throughput than COPS which needs to send dep-check messages to all
partitions

Righ : Update a randomly selected item in each partition in round-robin
ashion

* GAP in throughput smaller due to lesser no of dep-check messages in COPS

Results - Throughput

1800

450

—~E&— Eventual Colnsistenc'y

COPS/EI
1600 —9—+ GentleHéEi’r?r 400 |
1400 f 1 350 }
1200 ,’ oy N 300 }
1000 F - \‘ 250
8000_\\9—_9 ’ 200 f
—O © y,

I P 150 f
400 1 100 f
200 50 F

| I I I I I .
0
4 5 6 7 8

321 16:1 8:1 4:1 1:1 1:4 1:8 1:16 1:32 2 3 9
GET:PUT Ratio

' mmmmm Eventual Consistency
mmmm GentleRain

Throughput (Kops/sec)
Throughput (Kops/sec)

Snapshot Read Size

* Left: Read N randomly selected items from randomly selected partitions and
write one random item to each of M randomly selected partitions.

* GAP in throughput narrows as COPS does not need to track a lot of dependencies.

» Right: Causally Consistent snapshot reads in GentleRain and reads in
Eventually Consistent systems. Nearly identical throughput.

Results — Impact of GST update

* Increasing the time between GST 2000 —
updates leads to marginal 1900 |

increase in Throughput. 1800
1700 }

1600 |
1500

1400

* Increase of 256x in GST causes
increase of only 1.15x in
throughput.

Throughput (Kops/sec)

* GST message exchange traffic 1900

contained within datacenter. 1200 100 1000 10000 100000

GST Computation Interval (microseconds)

Results — Update Visibility Latency

e Measured as the time difference

between physical update time at RN
the origin replica and the time O T e Gty 77)
when update becomes visible at 8 | " Contiokan ,,.‘. -2
remote replica.)
» Updates originating at 1(50%) and T (5\4{/ o
V(50%) and later made visible at O 1
0

Update V|5|b|||ty equa| to 0 40 5.0. 0 70 | .é.q 0 100 110 120
network tl’ave| t|me Replicated Update Visibility Latency (ms)
* Gentle Rain Update Visibility equal

to longest network travel time (
between O & |) + GST update time

Pros

* Throughput comparable to Eventually consistent data stores .

* ldea of using physical clocks instead of logical — system built on top of
existing clock sync protocols like NTP

* Message size and bandwidth savings through elimination of
dependency check messages.

e Conflict detection

Improvements

* Biggest Drawback : Getting GST to make adequate progress across
datacenters

* Network Partitions across datacenters : Datacenters Excluded from GST calculation
* Machine Failures : Duplicate stable copies
* Heartbeat piggybacking more of a workaround , not reliable

* Without GST updates remote update visibility impacted.
* Tree model of dissemination susceptible to failures

* Parameters
* How frequently should heartbeats be sent out ?
 How recent writes supported for serving read only transactions («) ?

 Lack of negative / failure scenario experiments. What is the impact when
GST update does not happen at all ?

Related Work

* Spanner
 Serializable transactions with external consistency.
* Relies on synchronized GPS and atomic clocks to bound time uncertainty
* Relies on the

* COPS

* Used as baseline for comparison
* Implements causal consistency in partitioned replicated datastore.

* Causal dependencies recorded for an update are sent with update replication
messages

* At remote datacenter, causal dependencies are verified by sending dep-check
messages to other partitions

Your Questions

 What happens when a datacenter is partitioned, what happens on
rejoins ?

* Clock skew may impact visibility of updates ?

* With failure of root nodes within datacenters, how would GST be
computed ?

* How consistency is maintained among replicas in the same data

center. Is an update installed only after approval from all local replicas
?

