
GentleRain: Cheap and Scalable
Causal Consistency with Physical

Clocks
Jiaqing Du | Calin Iorgulescu | Amitabha Roy | Willy Zwaenepoel

École polytechnique fédérale de Lausanne (EPFL)

Published in the Proceedings of the 5th ACM Symposium on Cloud Computing,
2014

Presented By: Aditya Rastogi

What is Causal Consistency ?

• From the point of view of a client : If a certain version of a data item is
visible, then all of its causal dependencies (all versions that happen
before this version) are also visible.

• Operations that are causally related (happens before relationship)
are seen by every client in the same order.

Eventual
Consistency

Causal
Consistency

Sequential
Consistency

𝑆𝑡𝑟𝑜𝑛𝑔𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐿𝑒𝑣𝑒𝑙

Example

• Social Network Updates

• Order of display of unrelated status updates does not matter. (concurrent events)

• But Comments in response to a post must not appear beofore that post! (causally
related events)

Client A

Client B

Client C

R(K1) returns

22 or 33

W(K1, 22)
R(K2) returns 55 R(K1) must return 33

R(K1) returns 33

W(K2, 55)

W(K1, 33)

X

GentleRain

• A Geo-Replicated data store

• Provides Causal Consistency

• Motivation: No need for dependency check messages, use a single
physical timestamp instead

• Benefit: Achieve greater throughput

• Tradeoff: Delayed visibility of updates at remote replicas

System Model

• N partitions containing keys assigned by hash value

• Each partition replicated by M replicas (datacenters)

• Servers with physical clocks with monotonically increasing timestamps

• Put(key,val) : Create / modify key

• Get(key) : Get value for the key

• Sn_read(keys) : Returns a causally consistent snapshot containing values for
all the keys.

• Ro_trx(keys) : Returns values for a causally consistent read only
transaction. Values previously seen by the client must also be returned

GentleRain Protocol

• Timestamp all updates with physical clock value at originating server

• Local updates are immediately visible

• Remote updates are visible only when older than a global timestamp
determined by Global Stable Timestamp (GST)

• All updates across different partitions and replicas totally ordered by
update timestamp

Client and Server States

• Server
• Version Vector 𝑉𝑉𝑛

𝑚[1. .𝑀] : Physical timestamp vector at 𝑚𝑡ℎ replica of 𝑛𝑡ℎ

partition(key).

• Local Stable Time 𝐿𝑆𝑇𝑛
𝑚 : Minimum element of 𝑉𝑉𝑛

𝑚 at a partition.

• Global Stable Time 𝐺𝑆𝑇𝑛
𝑚 : Lower bound of minimum 𝐿𝑆𝑇 of all

partitions(keys) within the datacenter.

• Each item maintained as a tuple <key, value, update_timestamp, source_id>,
list of versions maintained.

• Messages sent out in update timestamp and clock order.

• Client
• Dependency Time 𝐷𝑇𝑐: latest update timestamp across all items accessed by client

• 𝐺𝑆𝑇𝑐 : Client’s knowledge of Global Stable Time.

Understanding GST

• Intuitively, serves as a cutoff time for causally consistent reads.

• All remote reads are return values with update timestamp < GST

• Guarantees that if at a certain partition the GST value is T, then all
partitions(keys) have received all updates with update timestamp less
than GST.

Get Operation (Non-Local Reads)

Client

R2

R1
k

(#1,a,2)
(#2,b,6)

R3

𝑔𝑒𝑡(𝑘, 𝐺𝑆𝑇𝑐 = 5)

𝐺𝑆𝑇𝑛
𝑚 ∶= 5(max(𝐺𝑆𝑇𝑐 , 𝐺𝑆𝑇𝑛

𝑚))

(𝑏, 𝑢𝑡 = 2, 𝐺𝑆𝑇𝑛
𝑚 = 5)

𝐺𝑆𝑇𝑛
𝑚 = 4

𝐺𝑆𝑇𝑐 ≔ 5(max(𝐺𝑆𝑇𝑐 , 𝐺𝑆𝑇𝑛
𝑚))

𝐷𝑇𝑐: = 2(max(𝐷𝑇𝑐 , 𝑢𝑡))

𝐺𝑆𝑇𝑐 = 5

𝐷𝑇𝑐 = 1

Get Operation (Local Reads)

Client

R2

R1/Source
k

(#1,a,2)
(#2,b,6)

R3

𝑔𝑒𝑡(𝑘, 𝐺𝑆𝑇𝑐 = 5)

𝐺𝑆𝑇𝑛
𝑚 ∶= 5(max(𝐺𝑆𝑇𝑐 , 𝐺𝑆𝑇𝑛

𝑚))

(𝑣𝑎𝑙 = 𝑏, 𝑢𝑡 = 6, 𝐺𝑆𝑇𝑛
𝑚 = 5)

𝐺𝑆𝑇𝑛
𝑚 = 4

𝐺𝑆𝑇𝑐 ≔ 5(max(𝐺𝑆𝑇𝑐 , 𝐺𝑆𝑇𝑛
𝑚))

𝐷𝑇𝑐 ≔ 6(max(𝐷𝑇𝑐 , 𝑢𝑡))

𝐺𝑆𝑇𝑐 = 5

𝐷𝑇𝑐 = 3

Put Operation

Client

R2
(#1,a,3)
(#2,b,7)
[4,7,6]

R1/Source
(#1,a,2)
(#2,b,4)
[4,7,6]

R3
(#1,a,3)
(#2,b,6)
[4,7,6]

𝑝𝑢𝑡(𝑘, 𝑐, 𝐷𝑇𝑐 = 3) (𝑢𝑡 = 5)

𝐷𝑇𝑐 ≔ 5 (max(𝐷𝑇𝑐 , 𝑢𝑡))

𝐺𝑆𝑇𝑐 = 2

𝐷𝑇𝑐 = 3

𝑙𝑜𝑐𝑎𝑙 𝑐𝑙𝑜𝑐𝑘 = 1
𝑉𝑉𝑛

𝑚 ≔ [5(𝑙𝑐), 7,6]
𝑎𝑑𝑑𝑘𝑒𝑦(#3, 𝑐, 𝑢𝑡 = 5(𝑙𝑐))

𝑉𝑉𝑛
𝑚 ≔ [𝑢𝑡 = 5,7,6]

𝑎𝑑𝑑𝑘𝑒𝑦(#3, 𝑐, 𝑢𝑡 = 5)

𝑙𝑜𝑐𝑎𝑙 𝑐𝑙𝑜𝑐𝑘 = 5>3

𝑉𝑉𝑛
𝑚 ≔ [𝑢𝑡 = 5,7,6]

𝑎𝑑𝑑𝑘𝑒𝑦(#3, 𝑐, 𝑢𝑡 = 5)

(𝑣𝑎𝑙 = 𝑎, 𝑢𝑡 = 3,
𝐺𝑆𝑇𝑛

𝑚 = 4)𝑤𝑎𝑖𝑡

𝐺𝑆𝑇𝑛
𝑚 = 4

𝑔𝑒𝑡(𝑘, 𝐺𝑆𝑇𝑐 = 3)

𝐺𝑆𝑇𝑐 = 3

Snapshot Read (Across Partitions)

Client

P1
k

(#1,a,3)
(#2,b,6)

P3
replicas for

both k,j

𝑠𝑛_𝑟𝑒𝑎𝑑([𝑘, 𝑗], 𝐺𝑆𝑇𝑐 = 5) ([𝑎, 𝐴], 𝑢𝑡′ = 3, 𝑔𝑠𝑡′ = 5)

𝐺𝑆𝑇𝑐 ∶= 6(max(𝐺𝑆𝑇𝑐 , 𝑔𝑠𝑡′))

𝐷𝑇𝑐 ∶= 3(max(𝐷𝑇𝑐 , 𝑢𝑡′))

𝐺𝑆𝑇𝑘
𝑚 ∶= 5(max(𝐺𝑆𝑇𝑐 , 𝐺𝑆𝑇𝑘

𝑚))
𝑠𝑡: = 𝐺𝑆𝑇𝑘

𝑚 = 5

P2
j

(#1,A,2)
(#2,B,6)

𝐺𝑆𝑇𝑗
𝑚: = 6(max(6,5))

𝐺𝑆𝑇𝑘
𝑚 = 4

𝐺𝑆𝑇𝑐 = 5

𝐷𝑇𝑐 = 3

𝐺𝑆𝑇𝑗
𝑚 = 6

(𝐴, 𝑢𝑡 = 2, 𝐺𝑆𝑇𝑗
𝑚 = 6)

𝑔𝑒𝑡(𝑗, 𝑠𝑡 = 5)

𝑢𝑡′: = 3 max 𝑢𝑡𝑎 = 3, 𝑢𝑡𝐴 = 2

𝑔𝑠𝑡′: = 6 max 5,6

Read-Only Transactions

Client

P1
k

(#1,a,3)
(#2,b,6)

P3
replicas for

both k,j

𝑟𝑜_𝑡𝑟𝑥([𝑘, 𝑗], 𝐺𝑆𝑇𝑐 = 5, 𝐷𝑇𝑐 = 3)

𝐺𝑆𝑇𝑐 ∶= max(𝐺𝑆𝑇𝑐 , 𝑔𝑠𝑡′)

𝐷𝑇𝑐 ∶= max(𝐷𝑇𝑐 , 𝑢𝑡′)

𝐺𝑆𝑇𝑘
𝑚 = 2

𝐺𝑆𝑇𝑐 = 5

𝐷𝑇𝑐 = 3

P2
j

(#1,A,2)
(#2,B,6)

𝐷𝑇𝑐−𝐺𝑆𝑇𝑘
𝑚 ≤ 𝛼(= 1) 𝐺𝑆𝑇𝑘

𝑚 = 4 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑆𝑛𝑎𝑝ℎ𝑠𝑜𝑡 𝑅𝑒𝑎𝑑 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙

𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝐺𝑆𝑇𝑘
𝑚 𝑡𝑜 ↑

𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑅𝑂 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 𝑎𝑠 𝑝𝑒𝑟 𝐶𝑂𝑃𝑆

GST Derivation

• 𝐺𝑆𝑇𝑛
𝑚 at a server is the lower bound on the minimum 𝐿𝑆𝑇𝑛

𝑚 of all
partitions(keys) within the same datacenter. i.e.

𝐺𝑆𝑇𝑛
𝑚 = min(𝐿𝑆𝑇𝑘

𝑚) ∀ 𝑘 ∈ 𝑁

• Periodically computed for partitions(keys) within same datacenter.

• For efficient derivation of 𝐺𝑆𝑇𝑛
𝑚 at a datacenter, spanning tree built

over all partitions in the datacenter.

• Leaf nodes push 𝐺𝑆𝑇𝑛
𝑚 up the tree, root communicates the min

𝐺𝑆𝑇𝑛
𝑚 back.

• Message complexity = 𝑂(𝑁) , time taken = 2 ∗ 𝑅𝑇𝑇 ∗ 𝑙𝑜𝑔𝑁 .

Heartbeats

• If a partition (key) does not receive frequent updates its 𝑉𝑉𝑛
𝑚 will not

advance → 𝐿𝑆𝑇𝑛
𝑚 will not advance → 𝐺𝑆𝑇𝑛

𝑚 will not advance !

• To solve this :

• Periodically update 𝑉𝑉𝑛
𝑚 at each partition(key)

• Set 𝑉𝑉𝑛
𝑚 𝑚 ∶= 𝑙𝑜𝑐𝑎𝑙 𝑐𝑙𝑜𝑐𝑘 at replica m

• Broadcast local clock to all replicas, using piggybacking on failure
detector heartbeats.

• At replica 𝑘 ≠ 𝑚 set 𝑉𝑉𝑛
𝑚 𝑘 ≔ clock from heartbeat of replica k

Garbage Collection

• Partitions within the same datacenter periodically exchange snapshot
timestamp of oldest active snapshot read.

• If a partition does not have any active snapshot read, it sends out GST.

• Partitions choose minimum timestamp of all such snapshot
timestamps for garbage collection.

• Keep only the latest item versions just before this timestamp , discard
earlier versions.

Conflict Detection

• Remember, even in causal ordering, you can have concurrent events !

• Conflict happens when causally unrelated updates to same key are
done at two different replicas.

• Updates that need to be replicated carry update time and source
replica id of previous version.

• Replicate operation at a server applied only if the previous version at
server = previous version in replicate message.

• Otherwise conflict reported to client which dictates the order of
conflicting updates in a consistent manner across servers.

Why Physical Clocks?

• System can be causally consistent even if we use logical clocks.

• However, logical clocks only updated when update is made.

• But Partitions(keys) can receive updates at different frequencies.

• If a partition (key) does not receive frequent updates its 𝑉𝑉𝑛
𝑚 will not

advance → 𝐿𝑆𝑇𝑛
𝑚 will not advance → 𝐺𝑆𝑇𝑛

𝑚 will not advance !

• Hence, loosely synced (using NTP) physical clocks used as timestamps
for updates.

Results

• System Evaluated in terms of throughput and remote update visibility

• Compared to data stores providing Eventual Consistency and Causal
Consistency

• Each partition replicated at three Amazon EC2 datacenters – Oregon
(O), Ireland (I) and Virginia(V)

Results - Throughput

• Left: Read a randomly selected item from every partition and update a
randomly selected item at one partition.
• Much better throughput than COPS which needs to send dep-check messages to all

partitions

• Right: Update a randomly selected item in each partition in round-robin
fashion
• GAP in throughput smaller due to lesser no of dep-check messages in COPS

Results - Throughput

• Left: Read N randomly selected items from randomly selected partitions and
write one random item to each of M randomly selected partitions.
• GAP in throughput narrows as COPS does not need to track a lot of dependencies.

• Right: Causally Consistent snapshot reads in GentleRain and reads in
Eventually Consistent systems. Nearly identical throughput.

Results – Impact of GST update

• Increasing the time between GST
updates leads to marginal
increase in Throughput.

• Increase of 256x in GST causes
increase of only 1.15x in
throughput.

• GST message exchange traffic
contained within datacenter.

Results – Update Visibility Latency

• Measured as the time difference
between physical update time at
the origin replica and the time
when update becomes visible at
remote replica.

• Updates originating at I(50%) and
V(50%) and later made visible at O

• COPS Update Visibility equal to
network travel time.

• Gentle Rain Update Visibility equal
to longest network travel time (
between O & I) + GST update time

Pros

• Throughput comparable to Eventually consistent data stores .

• Idea of using physical clocks instead of logical – system built on top of
existing clock sync protocols like NTP

• Message size and bandwidth savings through elimination of
dependency check messages.

• Conflict detection

Improvements

• Biggest Drawback : Getting GST to make adequate progress across
datacenters
• Network Partitions across datacenters : Datacenters Excluded from GST calculation
• Machine Failures : Duplicate stable copies
• Heartbeat piggybacking more of a workaround , not reliable

• Without GST updates remote update visibility impacted.
• Tree model of dissemination susceptible to failures
• Parameters

• How frequently should heartbeats be sent out ?
• How recent writes supported for serving read only transactions (𝛼) ?

• Lack of negative / failure scenario experiments. What is the impact when
GST update does not happen at all ?

Related Work

• Spanner
• Serializable transactions with external consistency.
• Relies on synchronized GPS and atomic clocks to bound time uncertainty
• Relies on the

• COPS
• Used as baseline for comparison
• Implements causal consistency in partitioned replicated datastore.
• Causal dependencies recorded for an update are sent with update replication

messages
• At remote datacenter, causal dependencies are verified by sending dep-check

messages to other partitions

Your Questions

• What happens when a datacenter is partitioned, what happens on
rejoins ?

• Clock skew may impact visibility of updates ?

• With failure of root nodes within datacenters, how would GST be
computed ?

• How consistency is maintained among replicas in the same data
center. Is an update installed only after approval from all local replicas
?

