f4: Facebook's Warm BLOB Storage System

Vaijayanth Raghavan (vraghvn2@Illinois.edu)

3/5/2015

What is a Blob?

???

What is a Blob?

- Binary Large Objects
- Immutable binary data
- Created once, read many times, never modified and sometimes deleted
- Includes photos ,videos ,documents (visible to the user) and others like heap dumps, source code (internal to FB)
- As of Feb 2014, 400 billion photos (huge storage footprint)

FB photo growth

400 billion and growing !!!

3/5/2015

Overall architecture

3/5/2015

Why Warm Storage?

- Presence of temperature zones
- Two week-trace- random 0.1% reads, 10% creates, 10% deletes

- Profile Photo	- HD Photo -	- HD Mobile Sync
- Photo	— Mobile Sync	
- Group Attac	chment — HD Video	Warm
— Video	 Message Attachment 	

 Points in graph represent decrease in request rates by an order of magnitude

3/5/2015

Hot or Warm?

Profile Photo
 HD Photo
 HD Mobile Sync
 HD Video
 Warm
 Video
 Message Attachment

- When to move content to warm storage
- 7 of 9 content types-less than a week
- Photos- three months, Profile photos- 1 year
- Warm content continuing to grow

3/5/2015

Overall Blob Storage Design

- Creates and deletes
 handled by Haystack
- Reads handled by either Haystack or f4

Overall Blob Storage Design

- Controller-maintenance tasks, compaction,gc
- Router Tier- hides storage implementation from clients, mapping information
- Router tier enables addition of f4
- Transformer tier- handles transformations like resizing and cropping photos, takes these away from the storage systems

3/5/2015

Hot Storage using Haystack

- Volumes are series of blobs
- Unlocked volumes: support reads, creates and deletes
- Once 100GB reached, transitioned into locked and no longer allows creates
- Volumes contain data file, index file and a journal file

Hot Storage using Haystack

- Creates only a small number of files (~100)
- Bypasses underlying file system for most metadata access
- Minimal set of metadata for identifying BLOBs, kept in memory
- Reduces IOPS for metadata fetches
- Fault tolerance to disk, host, rack and datacenter failure through triple replication of data and hardware RAID-6(1.2X replication)
- Good fault tolerance and high throughput
- But, effective-replication-factor 3*1.2=3.6 (not suitable for warm storage, which should be storage efficient !)

Warm Storage using f4

- Design goal 1: Storage efficiency
- Reduce the effective-replication-factor, while maintaining high degree of reliability and performance
- Effective-replication-factor of 3.6 is too high
- Design goal 2: Fault tolerance
- Drive failure, at low single digit annual rate
- Host failure, periodically
- Rack failure, multiple times per year
- Datacenter failures, very rare

F4 Cell

- Basic building block of f4 storage
- Entirely fits into a datacenter
 - Contains 14 racks of 15 hosts with 30 4TB drives per host
 - Treated as a single unit of acquisition and deployment.
- Fault tolerant to disk, host and rack failures
- Because of using Reed Solomon Encoding (next slide)
- Components
 - Name node
 - Storage node
 - Backoff node
 - Rebuilder node
 - Coordinator node

•

Simple Erasure Coding

- A (n,k) erasure code provides a way to:
- Take k blocks and generate n blocks of the same size
- Any k of n sufficient to reconstruct the original k
- Reed-Solomon a type of erasure code

Reed Solomon Encoding

- A popular eraser coding technique
- Has effective replication factor of 1.4x
- In production, RS(10,4) is used

•

•

Tolerates 4 rack failures, and therefore 4 disks/hosts

Reed Solomon Rebuilding

- Recovery of a block in case of failure
- Entire blocks not needed for recovery of a BLOB

X- Offset of photo1 in its block

Y- Size of Photo1

Geo-replication

- Initially data center level double replication, resulting in effective replication factor of 2.8
- Using XOR coding and accepting the tradeoff of reduced throughput for BLOBs stored at failed data center, effective replication factor reduced to 2.1

Evaluation

Peak load on the most overloaded cluster Still < 80 Reads/sec

3/5/2015

Evaluation

Evaluation summary

- f4 able to handle near worst case loads with lower throughput
 - f4 is resilient to failure at all levels
 - f4 saves storage:
 - Current corpus 65PB
 - Saves 39PB for 2.8 erf
 - Saves 87PB for 2.1 erf
- f4 provides low latency for reads:
 - Less than 30ms for 80%
 - Less than 80ms for 99%

Comments or criticism

- Need to factor in the popularity of the profile, not solely based on the age
- What about the overhead of reconstruction done by backoff and rebuilder nodes
- Why is the transition to warm storage permanent?
- Ambiguous about the exact time period in which various BLOB types are moved to f4 from Haystack

