Epidemic Algorithms for replicated Database maintenance

Alan Demers et al Xerox Palo Alto Research Center, PODC 87

Presented by: Harshit Dokania

Motivation

Replicated Databases
 Availability, Fault – tolerant, Faster reads
 Consistency
 Eventual Consistency : Epidemic Algorithms
 Faster reads, writes

Why Consistency ?

How to Propagate Updates?

- Direct Mail
- Anti-entropy Simple Epidemic infected or susceptible sites
 Rumor Mongering - Complex Epidemic infected, susceptible and removed
 Goal: For all s, s' € S: s.valueOf = s'.valueOf

Direct Mail

- Messages are queued, stable storage Reliable but...
- Not everybody knows everybody-
- Queue overflows

Source site = O(n) messages

Traffic = # sites * Average distance b/w the sites

Anti-Entropy in Background

Update[v : V] = s.ValueOf \leq (v, GMT)

opology

			Anti-Entropy	Key (Name)	Value (Bal)	Time (GMT)
			7 MILLIUDPy	Ram	6000	100
Key (Name)	Value (Bal)	Time (GMT)		John	50	100
Ram	5000	110	Select Random Site	Sam	1500	105
John	1050	110		Resolv	e Conf	licts
Sam	1200	100				
Slower	than I	Direct N	Aail ?	Key (Name)	Value (Bal)	Time (GMT)
Distrik	oute up	Ram	5000	110		
	- 11	John	1050	110		
Push	, Pull,	Sam	1500	105		

Push vs Pull

o Pull

 p_i = Probability of a site remaining susceptible after the ith cycle Only if it Selects susceptible site in i+1st cycle

$$\mathbf{p}_{i+1} = (\mathbf{p}_i)^2 \approx \mathbf{0}$$

o Push

Only if No infectious site chose to contact susceptible site

 $p_{i+1} = p_i (1 - 1/n)^{n(1 - p_i)} = p_i e^{-1} \approx 0$ (less rapidly)

But Anti-Entropy is Expensive!!!

Anti-Entropy is Expensive

- Usually Databases are in "nearly" complete agreement
 Then why send entire Database across network ?
- Exchange Database only if checksum of Database disagree
 Time to update to all sites > Interval between the updates
- Recent update list that contains all new changes for time window t' t' MUST > Time required to distribute the update
 Exchange recent update list, then compare checksums
 Checksums agree, Less traffic, Less Database comparison

Counter vs Probability

• Become removed after k unnecessary contacts

Response and Counters

Blind and Probabilistic

Counter k	Residue Traffic s m		Traffic Converge m t _{ave} t _{last}		Residue s	Traffic m	Converge t _{ave} t _{last}	
1	0.176	1.74	11.0 16.8	1	0.960	0.04	19 38	
2	0.037	3.30	12.1 16.9	2	0.205	1.59	17 33	
3	0.011	4.53	12.5 17.4	3	0.060	2.82	15 32	
4	0.0036	5.64	12.7 17.5	4	0.021	3.91	14.1 32	
5	0.0012	6.68	12.8 17.7	5	0.008	4.95	13.8 32	

Convergence Residue

Push, RM

Traffic

Push vs Pull

Numerous updates

Susceptible can find infective with high Probability

Counter	Residue	Traffic	Convergence	
k	S	m	t _{ave} t _{last}	Pull, Response and Counters
1	3.1 * 10-7	2.70	9.97 17.63	
2	5.8 *10-4	4.49	10.07 15.39	
3	4.0 * 10-6	6.09	10.08 14.00	

Exchange counters If both know the update Increment the site with smaller counter Push gets better than Pull with connection limit. How?

Two sites contact the same recipient One gets rejected Still gets the update Two sites contact the same infected site One gets rejected Only 1 site updated

Direct Mail vs Rumor

• Both has no guarantee

- Anti-entropy is the key

- But what if Anti- entropy finds conflicts ?
 - Let it be...

Clearinghouse uses Direct Mail for redistribution
 Worst case : DM Manages to deliver an update half the sites
 Later AE-DM generates O(n²) messages
 or
 AE-RM generates O(n) messages

Т	Delete					Key (Name)	Value (Bal)	Tîm (GM
Jol	nn, 120	D	eath (Certific	ates	Ram	5000	110
	F		cutii		acco	John	1050	110
Key (Name)	Value (Bal)	Time (GMT)				Sam	1200	100
Ram	5000	110						
Sam	1200	100	1		> 2	D	elete	
Sam	1200	100	R.	and the second		Join	II, 120	
Bu	t whe	n do we	delete De	ath Certific	ates	Looks	Easy	!!!
Key (Na	me) (Ba	ue Time l) (GMT)	3		4			
Ran	n 500	0 110			-			
Sam	n 120	0 100		Delete my	account			
				John				

Delete Death Certificates

• Delete them after 30 days

Still has risk of resurrection

 Sarin and Lynch propose Chandy-Lamport snapshot algorithm

> Records Application messages when sees duplicate Marker messages

Snapshot ensures Death certificate received at all sites

But what when site permanently fails?

Dormant Death Certificates

• Delete death certificates at most sites

-But retain Dormant death certificates at some retention sites "r"

 Obsolete update encounters Dormant certificate Activate Death certificate

-Original timestamp, Activation timestamp

- Much larger threshold for Dormant Death Certificates
- But lost due to permanent server failures

 $p_{fail} = 2^{-r}$

Spatial Distribution

- Saves significant amount of traffic
- probability of connecting site at distance d= d^{-a} when a = 2; convergence is polynomial in log n Generalized for CIN with distribution d^{-2D} dependent on dimension of mesh 'D'
 Q_s(d) = sites at distance d or less from s arbitrary network Best Scaling

Using Spatial Distribution

Anti-Entropy

Uniform distribution ≈ 80 conversations on critical links Expected traffic per link per cycle < 6 conversations $Q_s(d)$ adapts well to "local dimension"

Rumor Mongering

Making it less sensitive for sudden increases in $Q_s(d)$ Each site s builds a list of sites sorted by distance For a = 2 again complexity is O(d^{-2d})

Simulation Results: AE

Push-Pull, No Connection limit

Push-Pull, Connection limit 1

Distribution	t _{last} t _{ave}		Compare Traffic Avg Critical		Distribution	t _{last} t _{ave}	Compare Traffic Avg Critical		
Uniform	7.81	5.27	5.87	75.74		Uniform	11.00 6.97	3.71	47.54
a = 1.2	10.04	6.29	2.00	11.19		a = 1.2	16.89 9.92	1.14	6.39
a = 1.4	10.31	6.39	1.93	8.77		a = 1.4	17.34 10.15	1.08	4.68
a = 1.6	10.94	6.70	1.71	5.72		a = 1.6	19.06 11.06	0.94	2.90
a = 1.8	11.97	7.21	1.52	3.74		a = 1.8	21.46 12.37	0.82	1.68
a = 2.0	13.32	7.76	1.36	2.38		a = 2.0	24.64 14.14	0.72	0.94

Increase in convergence < factor of 2

Decrease in Average traffic ≈ factor of 4 Frequent anti-entropy Massive decrease in compare traffic for transatlantic links > factor of 30 Connection limit reduces the compare traffic/cycle but increases the number of cycles

Simulation Results: RM

Distribution k		t _{last} t _{ave}		Compare traffic Avg Bushey			Update traffic Avg Bushey		
Uniform	4		7.83	5.32	8.87	114.0		5.84	75.87
a = 1.2	5		10.14	6.33	3.20	18.0		2.60	17.25
a = 1.4	6		10.27	6.31	2.86	13.0		2.49	14.05
a = 1.6	7		11.24	6.90	2.94	9.80		2.27	10.54
a = 1.8	8		12.04	7.24	2.40	5.91		2.08	7.69
a = 2.0	9		13.00	7.74	1.00	3.44		1.90	5.94

Feedback, Counter, Push-Pull, No connection limit With increase in "a", k increases gradually Convergence time increases Decrease in Average traffic ≈ factor of 3 Massive decrease in compare traffic for transatlantic links > factor of 30

Discussion

- Anti- Entropy is robust than Rumor Mongering
 Rumors may become inactive leaving sites susceptible
- Push & Pull much sensitive to spatial distribution than Push-Pull (RM)

k = 36 for a = 1.2 (Push, Feedback, No connection limit, Counter)

 Anti - Entropy with distribution of d⁻² was implemented at CIN

Massive improvement in network load ξ consistency

Cons/Questions

Storage, Death Certificates
 Irregular Network Topologies
 Dynamic Hierarchy