Heading off Correlated Failures
through Independence-as-a-Service



Motivation

* Cloud services depend on redundancy to
ensure high reliability

* However, components that appear to be
independent may share subtle dependencies,
leading to unexpected correlated failures

e Redundant systems may contain risk groups
(RGs), or sets of components that can cause a
service outage if all the components fail
simultaneously



What Can Go Wrong?

.

Rack A

The availabilities of racks A, B, and
C all depend on the availability of
the aggregation switch. This
common dependency introduced
an unexpected RG.

Aggregar.cn Switch

Rack B

Rack C



Documented Examples

* Amazon AWS

— One glitch on an EBS server disabled entire service across
Amazon’s US-East region

— This, in turn, caused correlated failures among EC2
instances utilizing the EBS server, which disabled
applications designed for EC2 redundancy

* Google Storage
— “Close to 37% of failures are truly correlated”
— No tools to identify failure correlations systematically

* iCloud

— A storm in Dublin disabled both Amazon and Microsoft
clouds in that region for hours



Independence-as-a-Service (INDaaS)

* Architecture that proactively collects and
audits structural dependency data to evaluate

independence of redundant systems before
any failures occur

— Dependency acquisition modules collect
dependency data

— Auditing modules quantify independence of
redundant systems and pinpoint common
dependencies that may cause correlated failures



Main Contributions

. Evaluates independence of redundant systems
before or during deployment

. Provides fault graph analysis to enable the
evaluation of dependencies at multiple levels of
detail

. Uses scalable fault graph analysis

. Supports efficient PIA through private set
intersection cardinality

. Provides realistic case studies with a prototype
implementation



Architecture
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Dependency Data Representation
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Structural Independence Auditing (SIA)

 Assumes data sources are willing to share full
dependency data with each other

* |[nvolves generating a dependency graph,
finding and ranking risk groups, and
generating an audit report




Dependency Graph

| Redundancy Deployment | n OR gate: a failure propagates upwards, if any of the subsidiary components fails.

g‘ n AND gate: a failure propagates upwards, only if all of the subsidiary components fail.
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Risk Groups in Dependency Graphs

| Redundancy Deployment |

n OR gate: a failure propagates upwards, if any of the subsidiary components fails.
n AND gate: a failure propagates upwards, only if all of the subsidiary components fail.
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Algorithms for Finding Risk Groups

* Minimal RG algorithm

— Directly computes minimal RGs using reverse breadth-first
traversal

— Pros
e Results are exact

— Cons
e Algorithm is NP hard!

* Failure sampling algorithm

— Randomly assigns Os and 1s to basic events to test for
deployment failure and generate the appropriate RGs

— Pros
* Linear time complexity

— Cons
* Non-deterministic
* No guarantee that any RG is minimal



Ranking Risk Groups

e Size-based ranking

— Ranks RGs based on the number of components in
each RG

— The smaller the number of components in the RG, the
higher the rank

* Failure probability ranking

— Ranks RGs based on their relative importance,
|.=Pr(C) / Pr(T)
* Pr(C) represents probability of any given failure event C
* Pr(T) represents probability of any given failure event T
— Pr(T) computed by inclusion-exclusion principle
involving all minimal RGs of T



Failure Probability Ranking Example
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Generating the Audit Report

Let R denote a specific redundancy deployment
Let c, denote the i-th RG in R’s RG-ranking list
Size-based ranking algorithm

— indep(R) = Y.;-, size(c;)

Failure probability ranking algorithm

~ indep(R) = X7, I,

Computed independence scores, returned to the
client, can be used to choose the most

independent deployment for a particular service,
for example



Private Independence Auditing (PIA)

* Allows auditing to take place, even across two
cloud providers unwilling to share full
dependency data with each other

* Trust assumptions

1. Auditing clients may be malicious and would like to
know as much as possible about the providers’
dependency data

2. Cloud providers and auditing agents are honest but
curious

3. No collusion among cloud providers and auditing
agents



Jaccard similarity

Let S. denote the i-th dataset

](SOI rSk—l) a

Above computation useful for small datasets

[SoN--NSg—1]
|SoU-+"USk—1|

Low similarity for J close to 0, high similarity
for J close to 1, significant correlation for J
greater than or equal to 0.75



MinHash

e An approximation to Jaccard similarity, which is useful
for large datasets

e Let hi1)(:), ..., h{m(.) denote m different hash functions
m

* MinHash constructs a vector {h( ) (S)} and
i=1

min
computes Jaccard similarity as J (S, -*+, Sk—1) = —Eh

0 (\/%) where

— 6 denotes the number of datasets satisfying
mm(Sl) e — hmm(sk 1)
— (S) denotes an item e € S with the smallest value

(ife)



Key assumptions:
* Each party encrypts the
datasets using

5 S IP-SOP

Sy S commutative encryption
gCD GCD.A e Each party permutes its
. 3 dataset elements using a

fixed permutation
function
e All parties agree on the
same hash function

B,C,D B,C,D,A
SZ SZ

S4 59 n
52 52
S3 %1 A AB
B,C,D S >
B S, . DA D,A,B
P B CD All parties share the above Sy’ Sy
S S, datasets with each other gCD.A ¢CDAB
3 3
Si = the original dataset k -
SP1P2Ps = dataset k hashed, 33 53
encrypted, and permuted by p; S5 Sf’c
then encrypted and permuted GAB  GABC
by p,; then encrypted and 1 1
permuted by p,; etc. Sf’A’B Sf'A'B'C
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Dependency Graph & Audit Report

* Each provider first generates local dependency
graph at component-set level

 Each provider normalizes generated component-
set S, using two types of components with
common correlated failures
— Third-party routing elements (e.g., ISP routers)
* Accessible IP addresses used as unique identifiers

— Third-party software packages (e.g., OpenSSL)

e Standard names plus software versions used as unique
identifiers

e Report consists of rankings of Jaccard similarities



SIA Implementation & Deployment
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On each dependency acquisition node:

* NSDMiner used for network dependencies

* [shw used for hardware dependencies
e apt-rdepends used for software dependencies




PIA Implementation & Deployment
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Network Dependency Case Study
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Hardware Dependency Case Study
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(b) Common hardware dependency.

Top-ranking RGs:

1. {Server2}
2. {Switch1}

3. {Corel, Core?2}
4. {VM7,VM8}

Heading off Correlated Failures through Independence-as-a-Service 24



Software Dependency Case Study
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Performance Evaluation Configuration

Performance of INDaaS was evaluated on 40 workstations containing
Intel Xeon Quad Core HT 3.7 GHz CPUs and 16 GB of RAM.

| TopologyA B T

# switch ports

# core routers 64 144 576
# agg switches 128 288 1,152
# ToR switches 128 288 1,152
# servers 1,024 3,456 27,648

Total # of devices 1,344 4,176 30,528
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SIA Performance Evaluatlon Results
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PIA Performance Evaluation Results

e 1024-bit keys were used for all types of

encryption
P-SOP consistently outperforms KS computation-wise.
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Comparing Performance of SIA & PIA
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Comments & Criticisms

* Pros

— Risk group ranking makes it easy for users to identify potential
correlated failures in deployment configurations

— Flexible in allowing cloud providers to decide whether to share their
dependency data with other cloud providers

* (Cons

— For large enough deployments, in some cases, failure sampling
algorithm may run longer with much fewer minimal RGs than the
minimal RG algorithm

— Cannot be used for complex dependency acquisition

— Trust assumptions may not hold in reality (e.g., cloud providers may
behave maliciously)

— Cannot have fault-set level dependency graphs and failure probability-
based ranking without accurate failure probability information

— INDaaS is not fault tolerant in itself (e.g., the P-SOP nodes in PIA and
the auditing agent are single points of failure)



Piazza Comments & Criticisms

* Pros
— Dependency acquisition modules are pluggable
— Fault graphs serve as intuitive models

— Useful for people who have no prior knowledge of
correlated failures in system

* Cons
— Only considers static dependencies

— Failure probabilities, required by INDaaS, may be difficult
to obtain, and their accuracy is questionable

— Cloud providers may not have enough incentives to share
data

— Auditing is time-consuming



Thank you!



BACKUP SLIDES



Minimal RG Algorithm

Dequeue front
event from Q

Gather Enqueue basic
all basic events into
events initially empty Q

Were the
event’s RGs
already
generated?

Generate RG Does event
containing only the represent
basic event Y basic event?

0 Advantage
Results are exact.

Enqueue all

parent Add all RGs from Is input gate of
events into Q children event OR?

if any exist

Disadvantage
No Algorithm is NP hard!

Add all RGs resulting
from all possible
combinations of
Cartesian products of JRES

Is input gate of
event AND? No

Assertion failure!

children’s RGs
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Failure Sampling Algorithm

Gather Enqueue basic
all basic events into
events initially empty Q

No

IsQ L Dequeue front
empty? event from Q

Add RG containing basic
events assigned 1 values Terminate?

if top event has value 1 Does the
event have

a value?

Does event No
represent

basic event? Advantage
5 Linear time complexity

Randomly assign 1 or
0 as its value

Yes

Enqueue all .
parent Set value as OR of all Is input gate of Disadvantages
events into Q children’s values Viara event OR? * Non-deterministic

if any exist No guarantee that
any RG is minimal

No

Set value as AND of Is input gate of
all children’s values AV event AND? No

Assertion failure!
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