Heading off Correlated Failures through Independence-as-a-Service

Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford

Presenter: Ron Wright

3/10/2015

Motivation

- Cloud services depend on redundancy to ensure high reliability
- However, components that appear to be independent may share subtle dependencies, leading to unexpected *correlated failures*
- Redundant systems may contain *risk groups* (RGs), or sets of components that can cause a service outage if all the components fail simultaneously

What Can Go Wrong?

3/10/2015

Documented Examples

Amazon AWS

- One glitch on an EBS server disabled entire service across Amazon's US-East region
- This, in turn, caused correlated failures among EC2 instances utilizing the EBS server, which disabled applications designed for EC2 redundancy
- Google Storage
 - "Close to 37% of failures are truly correlated"
 - No tools to identify failure correlations systematically
- iCloud
 - A storm in Dublin disabled both Amazon and Microsoft clouds in that region for hours

Independence-as-a-Service (INDaaS)

- Architecture that proactively collects and audits structural dependency data to evaluate independence of redundant systems before any failures occur
 - Dependency acquisition modules collect dependency data
 - Auditing modules quantify independence of redundant systems and pinpoint common dependencies that may cause correlated failures

3/10/2015

Main Contributions

- 1. Evaluates independence of redundant systems before or during deployment
- 2. Provides fault graph analysis to enable the evaluation of dependencies at multiple levels of detail
- 3. Uses scalable fault graph analysis
- 4. Supports efficient PIA through private set intersection cardinality
- 5. Provides realistic case studies with a prototype implementation

3/10/2015

Dependency Data Representation

3/10/2015

Structural Independence Auditing (SIA)

- Assumes data sources are willing to share full dependency data with each other
- Involves generating a dependency graph, finding and ranking risk groups, and generating an audit report

Dependency Graph

3/10/2015

Risk Groups in Dependency Graphs

3/10/2015

Algorithms for Finding Risk Groups

- Minimal RG algorithm
 - Directly computes minimal RGs using reverse breadth-first traversal
 - Pros
 - Results are exact
 - Cons
 - Algorithm is NP hard!
- Failure sampling algorithm
 - Randomly assigns 0s and 1s to basic events to test for deployment failure and generate the appropriate RGs
 - Pros
 - Linear time complexity
 - Cons
 - Non-deterministic
 - No guarantee that any RG is minimal

3/10/2015

Ranking Risk Groups

- Size-based ranking
 - Ranks RGs based on the number of components in each RG
 - The smaller the number of components in the RG, the higher the rank
- Failure probability ranking
 - Ranks RGs based on their relative importance,
 I_c = Pr(C) / Pr(T)
 - Pr(C) represents probability of any given failure event C
 - Pr(T) represents probability of any given failure event T
 - Pr(T) computed by inclusion-exclusion principle involving all minimal RGs of T

Failure Probability Ranking Example

 $Pr(T) = Pr(A1 \text{ and } A3 \text{ fail}, \text{ or } A2 \text{ fails}) = 0.1 \cdot 0.3 + 0.2 - 0.1 \cdot 0.3 \cdot 0.2 = 0.224$

I_{A2 fails} = Pr(A2 fails) / Pr(T) = 0.2 / 0.224 = 0.8929

3/10/2015

I_{A1 fails, A3 fails} = Pr(A1 fails, A3 fails) / Pr(T) = 0.1 · 0.3 / 0.224 = 0.1339

Therefore, the RG {A2 fails} is ranked higher than the RG {A1 fails, A3 fails}.

Generating the Audit Report

- Let R denote a specific redundancy deployment
- Let c_i denote the i-th RG in R's RG-ranking list
- Size-based ranking algorithm

 $-indep(R) = \sum_{i=1}^{n} size(c_i)$

Failure probability ranking algorithm

 $-indep(R) = \sum_{i=1}^{n} I_{c_i}$

 Computed independence scores, returned to the client, can be used to choose the most independent deployment for a particular service, for example

3/10/2015

Private Independence Auditing (PIA)

- Allows auditing to take place, even across two cloud providers unwilling to share full dependency data with each other
- Trust assumptions
 - 1. Auditing clients may be malicious and would like to know as much as possible about the providers' dependency data
 - 2. Cloud providers and auditing agents are honest but curious
 - 3. No collusion among cloud providers and auditing agents

Jaccard similarity

Let S_i denote the i-th dataset

•
$$J(S_0, \dots, S_{k-1}) = \frac{|S_0 \cap \dots \cap S_{k-1}|}{|S_0 \cup \dots \cup S_{k-1}|}$$

- Above computation useful for small datasets
- Low similarity for J close to 0, high similarity for J close to 1, significant correlation for J greater than or equal to 0.75

MinHash

- An approximation to Jaccard similarity, which is useful for large datasets
- Let h⁽¹⁾(·), ..., h^(m)(·) denote m different hash functions
- MinHash constructs a vector {h⁽ⁱ⁾_{min}(S)}^m_{i=1} and computes Jaccard similarity as J(S₀, ..., S_{k-1}) = δ/m + O(1/√m), where

 δ denotes the number of datasets satisfying h⁽ⁱ⁾_{min}(S₁) = ... = h⁽ⁱ⁾_{min}(S_{k-1})
 h⁽ⁱ⁾_{min}(S) denotes an item e ∈ S with the smallest value h⁽¹⁾(e)

3/10/2015

Dependency Graph & Audit Report

- Each provider first generates local dependency graph at component-set level
- Each provider normalizes generated componentset S_i using two types of components with common correlated failures
 - Third-party routing elements (e.g., ISP routers)
 - Accessible IP addresses used as unique identifiers
 - Third-party software packages (e.g., OpenSSL)
 - Standard names plus software versions used as unique identifiers
- Report consists of rankings of Jaccard similarities

SIA Implementation & Deployment

3/10/2015

PIA Implementation & Deployment

3/10/2015

Network Dependency Case Study

Hardware Dependency Case Study

(b) Common hardware dependency.

3/10/2015

Software Dependency Case Study

Rank	2-Way Redundancy	Jaccard
1	Cloud2 & Cloud4	0.1419
2	Cloud2 & Cloud3	0.1547
3	Cloud1 & Cloud4	0.2081
4	Cloud1 & Cloud3	0.2939
5	Cloud3 & Cloud4	0.3489
6	Cloud1 & Cloud2	0.5059

Rank	3-Way Redundancy	Jaccard
1	Cloud2 & Cloud3 & Cloud4	0.1128
2	Cloud1 & Cloud2 & Cloud4	0.1207
3	Cloud1 & Cloud3 & Cloud4	0.1353
4	Cloud1 & Cloud2 & Cloud3	0.1536

3/10/2015

Performance Evaluation Configuration

Performance of INDaaS was evaluated on 40 workstations containing Intel Xeon Quad Core HT 3.7 GHz CPUs and 16 GB of RAM.

	Topology A	Topology B	Topology C
# switch ports	16	24	48
# core routers	64	144	576
# agg switches	128	288	1,152
# ToR switches	128	288	1,152
# servers	1,024	3,456	27,648
Total # of devices	1,344	4,176	30,528

3/10/2015

PIA Performance Evaluation Results

 1024-bit keys were used for all types of encryption

3/10/2015

Comparing Performance of SIA & PIA

3/10/2015

Comments & Criticisms

- Pros
 - Risk group ranking makes it easy for users to identify potential correlated failures in deployment configurations
 - Flexible in allowing cloud providers to decide whether to share their dependency data with other cloud providers
- Cons
 - For large enough deployments, in some cases, failure sampling algorithm may run longer with much fewer minimal RGs than the minimal RG algorithm
 - Cannot be used for complex dependency acquisition
 - Trust assumptions may not hold in reality (e.g., cloud providers may behave maliciously)
 - Cannot have fault-set level dependency graphs and failure probabilitybased ranking without accurate failure probability information
 - INDaaS is not fault tolerant in itself (e.g., the P-SOP nodes in PIA and the auditing agent are single points of failure)

3/10/2015

Piazza Comments & Criticisms

• Pros

- Dependency acquisition modules are pluggable
- Fault graphs serve as intuitive models
- Useful for people who have no prior knowledge of correlated failures in system
- Cons
 - Only considers static dependencies
 - Failure probabilities, required by INDaaS, may be difficult to obtain, and their accuracy is questionable
 - Cloud providers may not have enough incentives to share data
 - Auditing is time-consuming

Thank you!

3/10/2015

BACKUP SLIDES

3/10/2015

Minimal RG Algorithm

Failure Sampling Algorithm

3/10/2015