Heading off Correlated Failures
through Independence-as-a-Service

Motivation

* Cloud services depend on redundancy to
ensure high reliability

* However, components that appear to be
independent may share subtle dependencies,
leading to unexpected correlated failures

e Redundant systems may contain risk groups
(RGs), or sets of components that can cause a
service outage if all the components fail
simultaneously

What Can Go Wrong?

.

Rack A

The availabilities of racks A, B, and
C all depend on the availability of
the aggregation switch. This
common dependency introduced
an unexpected RG.

Aggregar.cn Switch

Rack B

Rack C

Documented Examples

* Amazon AWS

— One glitch on an EBS server disabled entire service across
Amazon’s US-East region

— This, in turn, caused correlated failures among EC2
instances utilizing the EBS server, which disabled
applications designed for EC2 redundancy

* Google Storage
— “Close to 37% of failures are truly correlated”
— No tools to identify failure correlations systematically

* iCloud

— A storm in Dublin disabled both Amazon and Microsoft
clouds in that region for hours

Independence-as-a-Service (INDaaS)

* Architecture that proactively collects and
audits structural dependency data to evaluate

independence of redundant systems before
any failures occur

— Dependency acquisition modules collect
dependency data

— Auditing modules quantify independence of
redundant systems and pinpoint common
dependencies that may cause correlated failures

Main Contributions

. Evaluates independence of redundant systems
before or during deployment

. Provides fault graph analysis to enable the
evaluation of dependencies at multiple levels of
detail

. Uses scalable fault graph analysis

. Supports efficient PIA through private set
intersection cardinality

. Provides realistic case studies with a prototype
implementation

Architecture

Auditing Client, Alice

Step 111 ﬁ Stepb

Independence Auditing

st8p5) (Agent-Side)] Sfe,og
Stepgﬂ Auditing Agent ﬂStepg

Independence Auditing 4 Independence Auditing
(DataSource-Side) (DataSource-Side)
Step3 ﬁ@ ﬁg Step3
Dependency Acquisition Dependency Acquisition

Dependency Data Source 1 Dependency Data Source 2

Dependency Data Representation

Software |
Dependency |

Hardware r
Dependency !

Network | { ToR Switch1 ToR Switc

h2

Dependency Expression (TOR1) Hardware dependencigs of S |
Network <src=“S” dst="“D” route="x,y,z”/> /__ 1 . - 'GGHZ| />
Hardware <hw="H" type="T"dep="x"/> * Core Router1«< edc oretRekber@2 §cHy />
S ft < =IIS” h =IIHII d =ll Y, n > o
oftware <pgm w ep xy:z / % (COI'E1) < |
tviﬂrk dmgde cies of S1 and S2: _ i : |
<See=! ‘Intgrnet" route="ToR1,Corel"/> e <pg n&&ﬂﬂﬁtel" hw="S1" dep="libc6,libgccl">
="S1" dst=" rnet" route="ToR1,Core2"/> * <pgm="Riakl" hw="S1" dep="libc6,libsvn1">
<src="S2" dst="Internet" route="ToR1,Corel"/> * <pgm="QueryEngine2" hw="S2" dep="libc6,libgccl">

<src="S2" dst="Internet" route="ToR1,Core2"/> <pgm="Riak2" hw="S2" dep="libc6,libsvn1">

Structural Independence Auditing (SIA)

 Assumes data sources are willing to share full
dependency data with each other

* |[nvolves generating a dependency graph,
finding and ranking risk groups, and
generating an audit report

Dependency Graph

| Redundancy Deployment | n OR gate: a failure propagates upwards, if any of the subsidiary components fails.

g‘ n AND gate: a failure propagates upwards, only if all of the subsidiary components fail.

top event .
Data Source E1 Data Source E2 I Redundancy deployment fails I
h h intermediate I
events
¥ I n {
LA A2 (B As | S1 fails S2 fails

E1's component-set = {A1, A2}

E2's component-set = {A2, A3} a) (C) -

hardware fails

A

* Yy =

CPU2 | | Disk2
fails fails

i] CPU1 Disk1 I n
fails fails n

Pr(E1 fails) Pr(Ez2 fails)
{

A _A

[
|
[
I
[
I
[
|
[
: ¢
""""""""" | - o
‘ b) ! hardware fails | network fails | Lsoftware fails§ |software fails] |network fails

‘ Pr(Redundancy fails) | ()I
[
I
[
I
[
|
[
[
|

))
basic Path1 fails Path? fails | Riakfails |} | QueryEng fails
events o h
=0.1 =0.2 =0.3 o .

i ¥] ¥
Pr(A1 fails) || Pr(A2 fails) Pr(A3 fails)
{ 1 1 {
E1's fault-set = {Pr(A1 fails)=0.1, Pr(A2 fails)=0.2} Core1 fails ToR1 fails || Core2 fails || libsvnl fails libcB fails lllbgccl fails §

E2's fault-set = {Pr(A2 fails)=0.2, Pr(A3 fails)=0.3}
(a) Component-set (b) Fault-set (c) Fault graph

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service

10

Risk Groups in Dependency Graphs

| Redundancy Deployment |

n OR gate: a failure propagates upwards, if any of the subsidiary components fails.
n AND gate: a failure propagates upwards, only if all of the subsidiary components fail.

fl)
{A1, A3} -
Data Sou|ce E1 Date |Source E2 1{Al, A2 minimal Redundancy deployment fails
Y) , A3L_RGs { A‘
RN p— | J— P
Al M o | s1 |ails | s2 hiils |
E1's component-set = {A1, A2}
E2's component-set = {A2, A3} [] ! ; ‘] !
————————————————— ! S1's S1's S1's S2's S2 S2's
. b) ! hardware fails | | ne | vork fails | | software fails | |software fails| | networ | fails || hardware fails
‘ Pr(Redundancy fails) | ()I ! 1
v | I I |
A .
I 1CPU1 | | Disk1 l CPU2 || Disk2
Pr(E1 fails) | | Pr(E2 fails) : fails fails “) ﬂ fails fails
|] v
h h I [Pat/|1 fails Path| fails | Riakfails | | QueryEng fails]
i ¥ ¥] |
Pr(A1 fails) | | Pr(A2 fails) Pr(A3 fails) | 1 l j
=0.1 =0.2 =0.3

E1's fault-set = {Pr(A1 fails)=0.1, Pr(A2 fails)=0.2}
E2's fault-set = {Pr(A2 fails)=0.2, Pr(A3 fails)=0.3}

(a) Component-set

Core1 fails

|
ToR1 fails

-_l_ I

Core2 fails [libsvn fails| | libc6 fails | | libgcel fails |

{TOR1 fails}
(b) Fault-set

{Corel fails, Core2 fails}
(c) Fault graph

Algorithms for Finding Risk Groups

* Minimal RG algorithm

— Directly computes minimal RGs using reverse breadth-first
traversal

— Pros
e Results are exact

— Cons
e Algorithm is NP hard!

* Failure sampling algorithm

— Randomly assigns Os and 1s to basic events to test for
deployment failure and generate the appropriate RGs

— Pros
* Linear time complexity

— Cons
* Non-deterministic
* No guarantee that any RG is minimal

Ranking Risk Groups

e Size-based ranking

— Ranks RGs based on the number of components in
each RG

— The smaller the number of components in the RG, the
higher the rank

* Failure probability ranking

— Ranks RGs based on their relative importance,
|.=Pr(C) / Pr(T)
* Pr(C) represents probability of any given failure event C
* Pr(T) represents probability of any given failure event T
— Pr(T) computed by inclusion-exclusion principle
involving all minimal RGs of T

Failure Probability Ranking Example

Pr(T) = Pr(Al and A3 fail, or A2 fails) =0.1-0.3+0.2-0.1-0.3-0.2 =

Pr(Redundancy fails)
¥

Y ¥
Pr(E1 fails) Pr(E2 fails)

a

¥ ¥ Y Y
Pr(A1 fails) | | Pr(A2 fails) Pr(A3 fails)
= 0.1 =0.2 =0.3
|55 £aiis = Pr(A2 fails) / Pr(T) =0.2 / = 0.8929
a1 fails, a3 faits = PT(A1 fails, A3 fails) / Pr(T) =0.1- 0.3/ =0.1339

Therefore, the RG {A2 fails} is ranked higher than the RG {A1 fails, A3 fails}.

Generating the Audit Report

Let R denote a specific redundancy deployment
Let c, denote the i-th RG in R’s RG-ranking list
Size-based ranking algorithm

— indep(R) = Y.;-, size(c;)

Failure probability ranking algorithm

~ indep(R) = X7, I,

Computed independence scores, returned to the
client, can be used to choose the most

independent deployment for a particular service,
for example

Private Independence Auditing (PIA)

* Allows auditing to take place, even across two
cloud providers unwilling to share full
dependency data with each other

* Trust assumptions

1. Auditing clients may be malicious and would like to
know as much as possible about the providers’
dependency data

2. Cloud providers and auditing agents are honest but
curious

3. No collusion among cloud providers and auditing
agents

Jaccard similarity

Let S. denote the i-th dataset

](SOI rSk—l) a

Above computation useful for small datasets

[SoN--NSg—1]
|SoU-+"USk—1|

Low similarity for J close to 0, high similarity
for J close to 1, significant correlation for J
greater than or equal to 0.75

MinHash

e An approximation to Jaccard similarity, which is useful
for large datasets

e Let hi1)(:), ..., h{m(.) denote m different hash functions
m

* MinHash constructs a vector {h() (S)} and
i=1

min
computes Jaccard similarity as J (S, -*+, Sk—1) = —Eh

0 (\/%) where

— 6 denotes the number of datasets satisfying
mm(Sl) e — hmm(sk 1)
— (S) denotes an item e € S with the smallest value

(ife)

Key assumptions:
* Each party encrypts the
datasets using

5 S IP-SOP

Sy S commutative encryption
gCD GCD.A e Each party permutes its
. 3 dataset elements using a

fixed permutation
function
e All parties agree on the
same hash function

B,C,D B,C,D,A
SZ SZ

S4 59 n
52 52
S3 %1 A AB
B,C,D S >
B S, . DA D,A,B
P B CD All parties share the above Sy’ Sy
S S, datasets with each other gCD.A ¢CDAB
3 3
Si = the original dataset k -
SP1P2Ps = dataset k hashed, 33 53
encrypted, and permuted by p; S5 Sf’c
then encrypted and permuted GAB GABC
by p,; then encrypted and 1 1
permuted by p,; etc. Sf’A’B Sf'A'B'C

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 19

Dependency Graph & Audit Report

* Each provider first generates local dependency
graph at component-set level

 Each provider normalizes generated component-
set S, using two types of components with
common correlated failures
— Third-party routing elements (e.g., ISP routers)
* Accessible IP addresses used as unique identifiers

— Third-party software packages (e.g., OpenSSL)

e Standard names plus software versions used as unique
identifiers

e Report consists of rankings of Jaccard similarities

SIA Implementation & Deployment

@ python with NetworkX

@ python

Dependency Graph

apt-rdepends

apt-rdepends

@ python @ python
Auditing Agent Dependency Dependency Dependency
Generating Acquisition Acquisition Acquisition

apt-rdepends

Determining RGs Ishw Ishw Ishw
Ranking RGs NSDMiner NSDMiner NSDMiner
S 0 > >
Node B i E i'
//' } Node C f Node D f Node E
Auditing Client| _
SSH links Cloud Service

<@ python
i' Node A

On each dependency acquisition node:

* NSDMiner used for network dependencies

* [shw used for hardware dependencies
e apt-rdepends used for software dependencies

PIA Implementation & Deployment

«
= Java

@ python~ @ python

Proxy
P-SOP

Dependency Dependency
Acquisition Acquisition

|apt-rdepends| ‘apt-rdepends ‘
| Ishw | | Ishw ‘
| NSDMiner | | NSDMiner ‘

@ python with NetworkX i" Node C E‘ N
ode F
iti Node E~4]

Cloud Provider1

Auditing Agent 1
|
Node B
H Proxy

Dependency Dependency

Acquisition Acquisition SSH “nks
‘apt—rdepends‘ |apt-rdepends|

‘ Ishw ‘ | Ishw |

| NSDMiner | | | | NSDMiner |

4
NodeA -

N , P-SOP
Audltlng Client \L
@Node D .IyéH
Node G """ |

@ python
‘*J = Java

Cloud Provider2
@ python @ python

Network Dependency Case Study

Racks
e4 e’ e8 e12 e1b5 el9 e32
SEE . §a
e5|| e9 e13 Y620 e22 629] Ye30 _ 33
X
e16 e2 e31
e24
c1 /
Switches % et - Internet

{Rack 5, Rack 29} (a) Common network depenency.

most independent
deployment

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service

Hardware Dependency Case Study

3/10/2015

= e e e e e — e e e e e e e e s Ees e

B0 N |Refrad | OO [O B '

VM1 |VM2 || |VMT7 || VM8 &MMB VM4 || VM5 || VME

|

|

|

0 0.1&
| N

:Seweﬂ Y Server2 |Serverd
|

|

|

|

Switch1 “":;Mw SWilCiTZ

- Core Router2
_ | Core Routert %_ __;‘_ _________

(b) Common hardware dependency.

Top-ranking RGs:

1. {Server2}
2. {Switch1}

3. {Corel, Core?2}
4. {VM7,VM8}

Heading off Correlated Failures through Independence-as-a-Service 24

Software Dependency Case Study

Auditing Client

}

Auditing Agent

Cloud F'rnvider/ -
G

<
MongoDB

Cloud Provider2

Cloud Provider4
-

~ s

o u B~ W N R

Cloud2 & Cloud4
Cloud2 & Cloud3
Cloud1 & Cloud4
Cloudl & Cloud3
Cloud3 & Cloud4
Cloud1 & Cloud2

0.1419
0.1547
0.2081
0.2939
0.3489
0.5059

. Rank | 3oy Redundany | acard

Cloud Provider3

(c) Common software dependency.

3/10/2015

1
2
3
4

Cloud2 & Cloud3 & Cloud4
Cloud1 & Cloud2 & Cloud4
Cloudl1 & Cloud3 & Cloud4
Cloudl1 & Cloud2 & Cloud3

Heading off Correlated Failures through Independence-as-a-Service

0.1128
0.1207
0.1353
0.1536

25

Performance Evaluation Configuration

Performance of INDaaS was evaluated on 40 workstations containing
Intel Xeon Quad Core HT 3.7 GHz CPUs and 16 GB of RAM.

| TopologyA B T

switch ports

core routers 64 144 576
agg switches 128 288 1,152
ToR switches 128 288 1,152
servers 1,024 3,456 27,648

Total # of devices 1,344 4,176 30,528

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 26

SIA Performance Evaluatlon Results

—

railure Sampli

Failure Samy
Failure Samy

T

% minimal RGs detected

=L

Failure Samy)

ling Alg
ling Alg (10" r
ling Alg (107 rounds

S S m—— ALy

Mlnlmal RG Alg
ling Alg (10 rounds)
Alg (10 rounds)
S rounds)
ds)
)

s
o

o)=

—

70

60

50

% minimal RGs detected

e

——Fdilure Sampling plg (10° round
. Fdilure Sampling Alg (1 0* round
 Fdilure Sampling Rlg (10° round
: Fc ilure Sampling Alg (1 0° round

Fc ilure Sarnpling E\Igl (1 O7Ir0ung

Minimal RG Al

— e et et e :

2 ";1 8 _j6

(Roughly) linear
computation
performance seen
for failure sampling
algorithm in all
topologies

% minimal RGs detected -

32
Computational time (minutes)

64 1 28 256

1

; = Mlnlmal HG Alg
...@...Farlure Sampling Alg (1 O rounds)
x __E___Fallure Sampling Alg (1 O rounds)
- Failure Sampling Alg (1 O rounds)
)
)

'"'§""Fa|Iure Sampling Alg (1 O rounds

+Farlure Sampllng Ng (1 O I'OUI’]dS

POXX+0O

1 2 4 8 16 32 64 128 256 512
Computational time (minutes)

(¢) Topology C: 30,528 devices.

2 64 128 256 512 1024

Tradeoff exists
between linear
time complexity
and logarithmic
percentage of
minimal RGs
detected

PIA Performance Evaluation Results

e 1024-bit keys were used for all types of

encryption
P-SOP consistently outperforms KS computation-wise.
200 — y . 7~ 1e+06

100000 |- B-SOP
‘© 10000 -
1000 F- .
10 L . e

‘ . ‘ %gj;i':',iiff:f;’fi;'——'-'f-"“' |]
1000 10000 , 100000 15000 10000 , 100000
Number of elements in each provider’s dataset Number of elements in each provider’s dataset

(a) Bandwidth overhead. (b) Computational overhead.

MB)
0
w
O
0

= 190 —p.gop

== s

A
o

R o
El
PAY

(seconds

s Small oy

Total traffic sent
Computational time

Comparing Performance of SIA & PIA

o 100000 —= | | 77 1 In both cases
= 10000 ¢ 1* P-SOP outperforms
TW
S2 1000 KS
E=R S B Small overhead 0 . . ° 6
_.c% D 100 e “PlATased on KS - 10° rounds of
a2l PR SIA based on minimal RG Alg ----&-- random samp'ing
g 10 | PlA'based on P-SOP @~ o o
@) ' . SIA based on sampling §106 rounds) - OUtperform minimal

5 10 15 20 RG algorithm

Number of cloud providers .
* Minimal RG
(a) Two-way redundancy. .
algorithm and KS do
o 1e+06 not scale well
£ 100000 | ;
o= .
=9 o % PlAbased on KS ——
Q— 100 ¥ SlAbased on minimal RG Alg -4 |
£ 10) E— PIA based on P-SOP ----@--- .
O ’ SIA based on sampling (10 rounds) - |
15 20

Number of cloud providers
(b) Three-way redundancy.

Comments & Criticisms

* Pros

— Risk group ranking makes it easy for users to identify potential
correlated failures in deployment configurations

— Flexible in allowing cloud providers to decide whether to share their
dependency data with other cloud providers

* (Cons

— For large enough deployments, in some cases, failure sampling
algorithm may run longer with much fewer minimal RGs than the
minimal RG algorithm

— Cannot be used for complex dependency acquisition

— Trust assumptions may not hold in reality (e.g., cloud providers may
behave maliciously)

— Cannot have fault-set level dependency graphs and failure probability-
based ranking without accurate failure probability information

— INDaaS is not fault tolerant in itself (e.g., the P-SOP nodes in PIA and
the auditing agent are single points of failure)

Piazza Comments & Criticisms

* Pros
— Dependency acquisition modules are pluggable
— Fault graphs serve as intuitive models

— Useful for people who have no prior knowledge of
correlated failures in system

* Cons
— Only considers static dependencies

— Failure probabilities, required by INDaaS, may be difficult
to obtain, and their accuracy is questionable

— Cloud providers may not have enough incentives to share
data

— Auditing is time-consuming

Thank you!

BACKUP SLIDES

Minimal RG Algorithm

Dequeue front
event from Q

Gather Enqueue basic
all basic events into
events initially empty Q

Were the
event’s RGs
already
generated?

Generate RG Does event
containing only the represent
basic event Y basic event?

0 Advantage
Results are exact.

Enqueue all

parent Add all RGs from Is input gate of
events into Q children event OR?

if any exist

Disadvantage
No Algorithm is NP hard!

Add all RGs resulting
from all possible
combinations of
Cartesian products of JRES

Is input gate of
event AND? No

Assertion failure!

children’s RGs

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 34

Failure Sampling Algorithm

Gather Enqueue basic
all basic events into
events initially empty Q

No

IsQ L Dequeue front
empty? event from Q

Add RG containing basic
events assigned 1 values Terminate?

if top event has value 1 Does the
event have

a value?

Does event No
represent

basic event? Advantage
5 Linear time complexity

Randomly assign 1 or
0 as its value

Yes

Enqueue all .
parent Set value as OR of all Is input gate of Disadvantages
events into Q children’s values Viara event OR? * Non-deterministic

if any exist No guarantee that
any RG is minimal

No

Set value as AND of Is input gate of
all children’s values AV event AND? No

Assertion failure!

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 35

