
Heading off Correlated Failures
through Independence-as-a-Service

Ennan Zhai, Ruichuan Chen, David Isaac
Wolinsky, and Bryan Ford

Presenter: Ron Wright

3/10/2015

Motivation

• Cloud services depend on redundancy to
ensure high reliability

• However, components that appear to be
independent may share subtle dependencies,
leading to unexpected correlated failures

• Redundant systems may contain risk groups
(RGs), or sets of components that can cause a
service outage if all the components fail
simultaneously

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 2

Aggregation Switch

Service

What Can Go Wrong?

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 3

Rack A Rack B Rack C

Service Service Service

The availabilities of racks A, B, and
C all depend on the availability of
the aggregation switch. This
common dependency introduced
an unexpected RG.

Service Service Service

Documented Examples

• Amazon AWS
– One glitch on an EBS server disabled entire service across

Amazon’s US-East region
– This, in turn, caused correlated failures among EC2

instances utilizing the EBS server, which disabled
applications designed for EC2 redundancy

• Google Storage
– “Close to 37% of failures are truly correlated”
– No tools to identify failure correlations systematically

• iCloud
– A storm in Dublin disabled both Amazon and Microsoft

clouds in that region for hours

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 4

Independence-as-a-Service (INDaaS)

• Architecture that proactively collects and
audits structural dependency data to evaluate
independence of redundant systems before
any failures occur

– Dependency acquisition modules collect
dependency data

– Auditing modules quantify independence of
redundant systems and pinpoint common
dependencies that may cause correlated failures

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 5

Main Contributions

1. Evaluates independence of redundant systems
before or during deployment

2. Provides fault graph analysis to enable the
evaluation of dependencies at multiple levels of
detail

3. Uses scalable fault graph analysis
4. Supports efficient PIA through private set

intersection cardinality
5. Provides realistic case studies with a prototype

implementation

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 6

Architecture

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 7

Dependency Data Representation

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 8

Type Dependency Expression

Network <src=“S” dst=“D” route=“x,y,z”/>

Hardware <hw=“H” type=“T” dep=“x”/>

Software <pgm=“S” hw=“H” dep=“x,y,z”/>

Network dependencies of S1 and S2:
• <src="S1" dst="Internet" route="ToR1,Core1"/>
• <src="S1" dst="Internet" route="ToR1,Core2"/>
• <src="S2" dst="Internet" route="ToR1,Core1"/>
• <src="S2" dst="Internet" route="ToR1,Core2"/>

Hardware dependencies of S1 and S2:
• <hw="S1" type="CPU" dep="S1-Intel(R)X5550@2.6GHz"/>
• <hw="S1" type="Disk" dep="S1-SED900"/>
• <hw="S2" type="CPU" dep="S2-Intel(R)X5550@2.6GHz"/>
• <hw="S2" type="Disk" dep="S2-SED900"/>

Software dependencies of S1 and S2:
• <pgm="QueryEngine1" hw="S1" dep="libc6,libgccl">
• <pgm="Riak1" hw="S1" dep="libc6,libsvn1">
• <pgm="QueryEngine2" hw="S2" dep="libc6,libgccl">
• <pgm="Riak2" hw="S2" dep="libc6,libsvn1">

Structural Independence Auditing (SIA)

• Assumes data sources are willing to share full
dependency data with each other

• Involves generating a dependency graph,
finding and ranking risk groups, and
generating an audit report

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 9

6 5

4 4

3 3

2

1

Dependency Graph

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 10

top event

intermediate
events

basic
events

(a) Component-set (b) Fault-set (c) Fault graph

Risk Groups in Dependency Graphs

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 11

(a) Component-set (b) Fault-set (c) Fault graph

{A1, A3}
{A1, A2}
{A1, A2, A3}
{A2}
{A2, A3}

{TOR1 fails} {Core1 fails, Core2 fails}

minimal
RGs

Algorithms for Finding Risk Groups

• Minimal RG algorithm
– Directly computes minimal RGs using reverse breadth-first

traversal
– Pros

• Results are exact

– Cons
• Algorithm is NP hard!

• Failure sampling algorithm
– Randomly assigns 0s and 1s to basic events to test for

deployment failure and generate the appropriate RGs
– Pros

• Linear time complexity

– Cons
• Non-deterministic
• No guarantee that any RG is minimal

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 12

Ranking Risk Groups

• Size-based ranking
– Ranks RGs based on the number of components in

each RG
– The smaller the number of components in the RG, the

higher the rank

• Failure probability ranking
– Ranks RGs based on their relative importance,

Ic = Pr(C) / Pr(T)
• Pr(C) represents probability of any given failure event C
• Pr(T) represents probability of any given failure event T

– Pr(T) computed by inclusion-exclusion principle
involving all minimal RGs of T

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 13

Failure Probability Ranking Example

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 14

Pr(T) = Pr(A1 and A3 fail, or A2 fails) = 0.1 · 0.3 + 0.2 – 0.1 · 0.3 · 0.2 = 0.224

• IA2 fails = Pr(A2 fails) / Pr(T) = 0.2 / 0.224 = 0.8929
• IA1 fails, A3 fails = Pr(A1 fails, A3 fails) / Pr(T) = 0.1 · 0.3 / 0.224 = 0.1339

Therefore, the RG {A2 fails} is ranked higher than the RG {A1 fails, A3 fails}.

Generating the Audit Report

• Let R denote a specific redundancy deployment
• Let ci denote the i-th RG in R’s RG-ranking list
• Size-based ranking algorithm

– 𝑖𝑛𝑑𝑒𝑝 𝑅 = 𝑠𝑖𝑧𝑒(𝑐𝑖)
𝑛
𝑖=1

• Failure probability ranking algorithm

– 𝑖𝑛𝑑𝑒𝑝 𝑅 = 𝐼𝑐𝑖
𝑛
𝑖=1

• Computed independence scores, returned to the
client, can be used to choose the most
independent deployment for a particular service,
for example

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 15

Private Independence Auditing (PIA)

• Allows auditing to take place, even across two
cloud providers unwilling to share full
dependency data with each other

• Trust assumptions
1. Auditing clients may be malicious and would like to

know as much as possible about the providers’
dependency data

2. Cloud providers and auditing agents are honest but
curious

3. No collusion among cloud providers and auditing
agents

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 16

Jaccard similarity

• Let Si denote the i-th dataset

• 𝐽 𝑆0, ⋯ , 𝑆𝑘−1 =
𝑆0∩⋯∩𝑆𝑘−1

|𝑆0∪⋯∪𝑆𝑘−1|

• Above computation useful for small datasets

• Low similarity for J close to 0, high similarity
for J close to 1, significant correlation for J
greater than or equal to 0.75

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 17

MinHash

• An approximation to Jaccard similarity, which is useful
for large datasets

• Let h(1)(·), …, h(m)(·) denote m different hash functions

• MinHash constructs a vector ℎ𝑚𝑖𝑛
𝑖

𝑆
𝑖=1

𝑚
 and

computes Jaccard similarity as 𝐽 𝑆0, ⋯ , 𝑆𝑘−1 =
𝛿

𝑚
+

𝑂
1

𝑚
, where

– δ denotes the number of datasets satisfying
ℎ𝑚𝑖𝑛
𝑖

𝑆1 = ⋯ = ℎ𝑚𝑖𝑛
𝑖

𝑆𝑘−1

– ℎ𝑚𝑖𝑛
𝑖
(S) denotes an item 𝑒 ∈ 𝑆 with the smallest value

h(1)(e)

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 18

P-SOP

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 19

Alice

Bob

Carol

Dave

𝑆𝑘 = the original dataset k

𝑆𝑘
𝑝1,𝑝2,𝑝3,… = dataset k hashed,

encrypted, and permuted by p1;
then encrypted and permuted
by p2; then encrypted and
permuted by p3; etc.

𝑆4 𝑆4
𝐷

𝑆3
𝐶,𝐷

𝑆2
𝐵,𝐶,𝐷

𝑆1
𝐴,𝐵,𝐶,𝐷

𝑆1 𝑆1
𝐴

𝑆4
𝐷,𝐴

𝑆3
𝐶,𝐷,𝐴

𝑆2
𝐵,𝐶,𝐷,𝐴

𝑆2 𝑆2
𝐵

𝑆1
𝐴,𝐵

𝑆4
𝐷,𝐴,𝐵

𝑆3
𝐶,𝐷,𝐴,𝐵

𝑆3 𝑆3
𝐶

𝑆2
𝐵,𝐶

𝑆1
𝐴,𝐵,𝐶

𝑆4
𝐷,𝐴,𝐵,𝐶

𝑆4
𝐷

𝑆3
𝐶

𝑆2
𝐵

𝑆1
𝐴

𝑆2
𝐵,𝐶

𝑆1
𝐴,𝐵

𝑆4
𝐷,𝐴

𝑆3
𝐶,𝐷

𝑆1
𝐴,𝐵,𝐶

𝑆4
𝐷,𝐴,𝐵

𝑆3
𝐶,𝐷,𝐴

𝑆2
𝐵,𝐶,𝐷

𝑆1
𝐴,𝐵,𝐶,𝐷 𝑆2

𝐵,𝐶,𝐷,𝐴

𝑆3
𝐶,𝐷,𝐴,𝐵 𝑆4

𝐷,𝐴,𝐵,𝐶

All parties share the above
datasets with each other

Key assumptions:
• Each party encrypts the

datasets using
commutative encryption

• Each party permutes its
dataset elements using a
fixed permutation
function

• All parties agree on the
same hash function

Dependency Graph & Audit Report

• Each provider first generates local dependency
graph at component-set level

• Each provider normalizes generated component-
set Si using two types of components with
common correlated failures
– Third-party routing elements (e.g., ISP routers)

• Accessible IP addresses used as unique identifiers

– Third-party software packages (e.g., OpenSSL)
• Standard names plus software versions used as unique

identifiers

• Report consists of rankings of Jaccard similarities

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 20

SIA Implementation & Deployment

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 21

with NetworkX

SSH links

On each dependency acquisition node:
• NSDMiner used for network dependencies
• lshw used for hardware dependencies
• apt-rdepends used for software dependencies

PIA Implementation & Deployment

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 22

with NetworkX

SSH links

Network Dependency Case Study

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 23

Racks

Switches

{Rack 5, Rack 29}
most independent
deployment

Hardware Dependency Case Study

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 24

Top-ranking RGs:
1. {Server2}
2. {Switch1}

3. {Core1, Core2}
4. {VM7, VM8}

Software Dependency Case Study

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 25

Rank 2-Way Redundancy Jaccard

1 Cloud2 & Cloud4 0.1419

2 Cloud2 & Cloud3 0.1547

3 Cloud1 & Cloud4 0.2081

4 Cloud1 & Cloud3 0.2939

5 Cloud3 & Cloud4 0.3489

6 Cloud1 & Cloud2 0.5059

Rank 3-Way Redundancy Jaccard

1 Cloud2 & Cloud3 & Cloud4 0.1128

2 Cloud1 & Cloud2 & Cloud4 0.1207

3 Cloud1 & Cloud3 & Cloud4 0.1353

4 Cloud1 & Cloud2 & Cloud3 0.1536

Performance Evaluation Configuration

Topology A Topology B Topology C

switch ports 16 24 48

core routers 64 144 576

agg switches 128 288 1,152

ToR switches 128 288 1,152

servers 1,024 3,456 27,648

Total # of devices 1,344 4,176 30,528

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 26

Performance of INDaaS was evaluated on 40 workstations containing
Intel Xeon Quad Core HT 3.7 GHz CPUs and 16 GB of RAM.

SIA Performance Evaluation Results

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 27

(Roughly) linear
computation
performance seen
for failure sampling
algorithm in all
topologies

Tradeoff exists
between linear
time complexity
and logarithmic
percentage of
minimal RGs
detected

PIA Performance Evaluation Results

• 1024-bit keys were used for all types of
encryption

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 28

Large overhead
difference

Small overhead
difference

P-SOP

KS

P-SOP consistently outperforms KS computation-wise.

Small overhead

Large overhead

Small overhead

Large overhead

Comparing Performance of SIA & PIA

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 29

In both cases
• P-SOP outperforms

KS
• 106 rounds of

random sampling
outperform minimal
RG algorithm

• Minimal RG
algorithm and KS do
not scale well

Comments & Criticisms

• Pros
– Risk group ranking makes it easy for users to identify potential

correlated failures in deployment configurations
– Flexible in allowing cloud providers to decide whether to share their

dependency data with other cloud providers

• Cons
– For large enough deployments, in some cases, failure sampling

algorithm may run longer with much fewer minimal RGs than the
minimal RG algorithm

– Cannot be used for complex dependency acquisition
– Trust assumptions may not hold in reality (e.g., cloud providers may

behave maliciously)
– Cannot have fault-set level dependency graphs and failure probability-

based ranking without accurate failure probability information
– INDaaS is not fault tolerant in itself (e.g., the P-SOP nodes in PIA and

the auditing agent are single points of failure)

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 30

Piazza Comments & Criticisms

• Pros
– Dependency acquisition modules are pluggable
– Fault graphs serve as intuitive models
– Useful for people who have no prior knowledge of

correlated failures in system

• Cons
– Only considers static dependencies
– Failure probabilities, required by INDaaS, may be difficult

to obtain, and their accuracy is questionable
– Cloud providers may not have enough incentives to share

data
– Auditing is time-consuming

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 31

Thank you!

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 32

BACKUP SLIDES

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 33

Minimal RG Algorithm

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 34

Start
Gather
all basic
events

Enqueue basic
events into

initially empty Q

Is Q
empty?

End

Dequeue front
event from Q

Is input gate of
event AND?

Were the
event’s RGs

already
generated? Does event

represent
basic event?

Is input gate of
event OR?

Generate RG
containing only the

basic event

Add all RGs from
children

Add all RGs resulting
from all possible
combinations of

Cartesian products of
children’s RGs

Enqueue all
parent

events into Q
if any exist

Yes

No

Yes

No

Disadvantage
Algorithm is NP hard!

Yes

No

Yes

No

Yes
Assertion failure!

No

Advantage
Results are exact.

Failure Sampling Algorithm

3/10/2015 Heading off Correlated Failures through Independence-as-a-Service 35

Is Q
empty?

Dequeue front
event from Q

Is input gate of
event AND?

Does the
event have

a value?
Does event
represent

basic event?

Is input gate of
event OR?

Randomly assign 1 or
0 as its value

Set value as OR of all
children’s values

Set value as AND of
all children’s values

Enqueue all
parent

events into Q
if any exist

Yes

No

Yes

No

Disadvantages
• Non-deterministic
• No guarantee that

any RG is minimal

Yes

No

Yes

No

Yes
Assertion failure!

No

Advantage
Linear time complexity

Start
Gather
all basic
events

Enqueue basic
events into

initially empty Q

Add RG containing basic
events assigned 1 values
if top event has value 1

Terminate?

End

Yes

No

