
1

CS 525: Advanced Topics in

Distributed Systems

Spring 2010

Indranil Gupta

Structuring Project Code:

“The 1 Line Solution”

© November 11, 2004

Background

Discussion – Studying Your

Protocol

• How accurate are mathematical analyses?

– Often simplistic, so we resort to simulations, often
trace-based…

• Simulations easy to do – implement, and run on
your machine (or a small cluster)

• How accurately can simulations model real-world
stresses?

• How do we know that we’re accounting for all
possible kinds of failure?

• All possible kinds of stresses? All possible kinds
of traces?

Discussion – Studying Your

Protocol
• Can simulations ever model reality accurately?

• Is deployment the ultimate test?

• Have you seen any papers that match simulation

and real-world running experimental numbers?

• Why?

• Unfortunately, often “The paper is the system” in

research

As a Result

• Rare for someone else to pick up your idea,

implement it and run it in the real world

(although it does happen, there are too

many ideas out there…)

Research Spectrum

Prefer mathematical

analysis

Can’t sleep until

FreeBSD/Cisco

is running my code

Will simulate for

paper

Will implement for

paper

2

Ideal (but difficult) Research Cycle

Prefer mathematical

analysis

Can’t sleep until

FreeBSD/Cisco

is running my code

Will simulate for

paper

Will implement for

paper

Remember: Real World Code deployment is a cycle

Mathematical

analysis Deploy

Simulate
Implement

Presumption

• Assumption: Rare for someone else to pick up
your idea, implement it and run it in the real world
(although it does happen, there are too many ideas
out there…)

• Deployment is mostly your responsibility

• Problem: Design your simulation code so that you
can convert your code from

simulation � deployable version by changing a
single line of code

• “1 Line Solution”

For Your Project

“How do I write code for my

Distributed Protocol XYZ so that I

can evaluate it with 100, 000 nodes?”

The 1 Line Solution

Writing The Code

• Simulation engines (ns2, glomosim) etc. are

one option

• A required standard in some research

communities (e.g., ad-hoc networking)

• Not so in the p2p or (largely) the sensor net

communities (yet)

3

Writing The Code

• Let’s talk about a second option - Basic Custom
Evaluation…

• Threads – a bad idea! (100K threads on Linux?
Try it!)

• Ultimate goal – write real deployable code that
can run on a socket API/your favorite OS

• But also generate numbers for 1000, 10K, 100K
nodes

• Simulation� structure it so it’s easy to do both of
above by changing just one line of code

• How?

struct node{

char nodeid[6]; // ip(4),port(2)

.

.

.

}

struct node{

char nodeid[6]; // nodeid[0] assigned int value

}

struct node allnodes[10000];

for(i=0;i<=9999;i++)

schedule(allnodes[i]);

schedule(struct node *n,…){

recv();

process;

send();

}

node 0000 node 0001 node 9999

…………...

struct node{

char nodeid[6];

}

schedule(struct node *n,…){

recv();

process;

send();

}

node 0000 node 0001 node 9999

…………...

struct node allnodes[10000];

Simulator

All code for a node

Buffer1

Buffer2

struct msg{

char src[6];

char dest[6];

}

struct node{

char nodeid[6];

}

node 0000 node 0001 node 9999

…………...

Simulator

All code for a node

Buffer1

Buffer2

101 102 103 104 …

for(i=0;i<=9999;i++)

schedule(allnodes[i]);

swap buffer1 and buffer2;

struct msg{

char src[6];

char dest[6];

}

struct node{

char nodeid[6];

}

node 0000 node 0001 node 9999

…………...

Simulator

All code for a node

Buffer1

Buffer2

101 102 103 104 …

for(i=0;i<=9999;i++)

schedule(allnodes[i]);

swap buffer1 and buffer2;

Feature msg

delays to account

for topology

4

The advantage of such an

elaborate spread?

• Layering gives clean separation of

implementation from simulation

• Easy debugging (No global variables for the

implementation, please!)

• And…

struct node{

char nodeid[6];

}

recv();

send();

node 0000 node 0001 node 9999

…………...

Simulator

All code for a node

Buffer1

Buffer2

101 102 103 104 …

for(i=0;i<=9999;i++)

schedule(allnodes[i]);

swap buffer1 and buffer2;

struct node{

char nodeid[6];

}

recv();

send();

Socket Interface

All code for a node

socket_send()

socket_ recv()

Change one line of code to

turn a simulation into a

deployable version

Using function pointers,

change a single line of code

to switch simulation����deployable

code

struct node{

char nodeid[6];

}

recv();

send();

Interface to

another

Simulator

All code for a node

sim_send()

sim_ recv()

Change one line of code to

plug it into a different

simulation engine

Using function pointers,

change a single line of code

to switch to a different

simulation engine

• Easier to do above with C or Java or C++

• Can put an “Application” layer on top of the

“Real Code” layer

• Of course, you are free to structure your

code in a different way should you so

wish…

Questions

