
On Fault Resilience of
Open Stack

Subho Banerjee

OpenStack

• Control and automate pools of resources

• Efficiently allocate resources

• Empower admins & users via self-service portals

• Provide APIs to make apps cloud-aware

Broad Commercial Support

Grizzly Logical Architecture

Overview
• Fault Injection Framework for OpenStack

• Target intra/inter service communication during processing of an external
request

!

• Study fault resiliency of OpenStack

• Fault Resiliency — Maintain correct functionalities under faults

• OpenStack essex and grizzly

!

• Categorize bug categories dealing with fault resilience issues

Fault Injection
Framework

Design Principles

• Inject faults in communication flows

• Expose OpenStack’s high level semantics to the
fault injection module

• Consider 11 most commonly used API endpoints

Parts of the stack being
tested

Identity Service
(keystone)

REST

RE
ST

REST

AMQP Broker
RPC

DB

Image Service
(glance)

Compute Service
(nova)

RPC

1. Construct
execution graphs

for external
requests

2. Performing fault injection and
collecting results

3. Specification
checking

1. Construct Execution Graph (Logging
and Coordination Framework)

• System-wide unique tag
assigned to each external
request

• Introduce tag fields request
context and thread-local
storage

• Trace processing of tag within
scope of stack

Execution graph for VM_Create

• Layers in white are instrumented with the new tag based
logging scheme.
!

• Consolidate communication between services
!

• Shared across the stack

2. Fault Injection
Constructing Test Plans

• Only single faults injected
!

• Two types of faults considered
• Service Faults
• Network Partition Faults
!

• Suggest clustering nodes on
execution graph

Inject Faults

3. Specification Checking

Fault Resilience of
OpenStack

Types of Errors
• Timeout mechanisms missing in critical OpenStack paths, e.g.,

REST

• CreateVM — Compute service querying image service, a
network partition blocks system

• Fixed in grizzly — 600s timeout by default.

!

• Cross layer coordination — How do you coordinate across layers?

• OpenStack’s AMQP Wrapper waits indefinitely for answer. QPID
client drops request after n tries.

• Library Interface —

• Block compute service — QPID client uses a read/
select which is different from the Python
implementation. Hence the client performs read on
pipe before it is ready.

!

• Return Code Checking

• Incorrect use of return codes

• Checking disabled

Discussion
• How does the OpenStack configuration affect the

fault to failure propagation?

• Test plan creation — What do you do in cases
where there are multiple ways faults can be
injected?

• Finding the bug is still a manual process

• Does changing system’s state make a difference to
the result?

