
On Fault Resilience of 
Open Stack

Subho Banerjee



OpenStack

• Control and automate pools of resources 

• Efficiently allocate resources 

• Empower admins & users via self-service portals 

• Provide APIs to make apps cloud-aware



Broad Commercial Support



Grizzly Logical Architecture



Overview
• Fault Injection Framework for OpenStack 

• Target intra/inter service communication during processing of an external 
request 

!

• Study fault resiliency of OpenStack 

• Fault Resiliency — Maintain correct functionalities under faults 

• OpenStack essex and grizzly 

!

• Categorize bug categories dealing with fault resilience issues



Fault Injection 
Framework



Design Principles

• Inject faults in communication flows 

• Expose OpenStack’s high level semantics to the 
fault injection module 

• Consider 11 most commonly used API endpoints
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1. Construct 
execution graphs 

for external 
requests

2. Performing fault injection and 
collecting results

3. Specification 
checking



1. Construct Execution Graph (Logging 
and Coordination Framework)

• System-wide unique tag 
assigned to each external 
request 

• Introduce tag fields request 
context and thread-local 
storage 

• Trace processing of tag within 
scope of stack

Execution graph for VM_Create



• Layers in white are instrumented with the new tag based 
logging scheme. 
!

• Consolidate communication between services 
!

• Shared across the stack



2. Fault Injection
Constructing Test Plans



• Only single faults injected 
!

• Two types of faults considered  
• Service Faults 
• Network Partition Faults 
!

• Suggest clustering nodes on 
execution graph

Inject Faults



3. Specification Checking



Fault Resilience of 
OpenStack







Types of Errors
• Timeout mechanisms missing in critical OpenStack paths, e.g., 

REST 

• CreateVM — Compute service querying image service, a 
network partition blocks system 

• Fixed in grizzly — 600s timeout by default. 

!

• Cross layer coordination — How do you coordinate across layers? 

• OpenStack’s AMQP Wrapper waits indefinitely for answer. QPID 
client drops request after n tries.



• Library Interface —  

• Block compute service — QPID client uses a read/
select which is different from the Python 
implementation. Hence the client performs read on 
pipe before it is ready. 

!

• Return Code Checking 

• Incorrect use of return codes 

• Checking disabled



Discussion
• How does the OpenStack configuration affect the 

fault to failure propagation? 

• Test plan creation — What do you do in cases 
where there are multiple ways faults can be 
injected? 

• Finding the bug is still a manual process 

• Does changing system’s state make a difference to 
the result?


