
What do they have in common?
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Key Features

• Strong Consistency and Highly Available

• Durability

• Global and Scalable Namespace/Storage
• Consistent accessibility anywhere

• Address exabytes of data and beyond

• Disaster Recovery

• Multi-Tenancy and Cost of Storage
• Multiple customers served from the same shared 

storage
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Windows Azure Cloud Platform
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Source: http://blogs.msdn.com/



WAS Fundamentals

Global Partitioned Namespace
http(s)://AccountName.<service>.core.windows.net/PartitionName/ObjectName

Storage Abstractions

• Blob (Binary Large Object)
• Named files along with metadata for the file
• http://BobsDVD.blob.core.windows.net/Comedy/FunnyMovie.mp4

• Tables
• Highly scalable non-relational database
• http://sally.table.core.windows.net/Customer

• Queues
• Reliable storage and delivery of messages
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General Architecture
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Location Service

• Manages all storage stamp

• Manages account namespace
• Across storage stamps

• Disaster Recovery

• Load Balancing

• Scales additional location and storage

• Respects Location Affinity

• Updates DNS

• Durable – Distributed across 2 geo locations
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Stream Layer – Fundamentals

• Block – min unit of read/write
• Variable in size (up to 4MB)

• Checksum performed

• Extent – unit of replication
• Sealing

• Size limit of 1GB

• Stream – Ordered list of pointers to extents
• Hierarchical namespace

• Append-only
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Stream Layer – Architecture

• An append-only DFS

• Data stored as files

• Replication factor of 3

• Re-replicate on:
• EN failure

• Disk failure

• Checksum mismatch
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Stream Layer – Load Balancing

• Deadline
• Read requests are submitted with a “deadline” 

requirement

• EN replies to client that deadline cannot be met if it 
determines that it cannot meet the deadline

• Sealing
• Sealed extents are bitwise identical

• Erasure Coding (Reed-Solomon)
• Improves durability

• Data compression from 3x to 1.3x -1.5x
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Partition Layer – Architecture
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• Object Tables
• Maintained for each data 

abstraction
• RangePartitions assigned 

across PS

• Partition Manager
• Several in a stamp
• Heartbeats to PS

• Partition Server
• Servers requests to a set 

of RangePartitions

• Partition Map
• Maps RangePartition to 

corresponding PS
• Used by FE for request 

routing



Partition Layer - RangePartition
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Partition Layer – Load Balancing

• Reassign RangePartition
• PS has too high work load evenly spread out across 

RangePartition

• Split
• Load-based or Size-based

• Merge
• To keep # of RangePartitions proportional to # of PS in a 

stamp
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Load Balancing

• Location Service
• Allocates accounts to storage stamps and manages them 

across storage stamps

• Distributed across 2 geographic locations

• Stream Layer
• EN serves a read request only if it can meet deadline

• Partition Layer
• RangePartition Load Balancing – Reassigning, Splitting 

and Merging
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Replication for Consistency

• Intra-Stamp Replication
• Synchronous replication within stamp

• Critical path of customer’s write request

• Durability against hardware failures

• Inter-Stamp Replication
• Asynchronous replication (done in background)

• Geo-redundancy against natural disasters within a 
geographical location
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Failure Handling
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Throughput
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• Random 1KB get/put 
requests

• Against 100GB Table

• Random blob get/put 
requests

• 4MB blobs per request



Workload Profiles
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Discussions/Comments

• Paper is more of an engineering effort than introducing new concepts to 
the field

• Differences between Windows Azure Storage vs Spanner, Bigtable or 
AWS as a storage system

• What are the ways in which client deals with duplicate records? The 
solution seems to provide an append-only solution at stream level. Are 
no block deletions supported at all? Or will the extent save information 
about valid blocks and invalid blocks?

• Still unclear if CAP Theorem was really violated. Synchronous replication 
is on the critical path for all customer write requests, so it must happen 
before the write is considered complete. Maybe if you partition the 
network just right, the synchronous replication guarantee could be 
exploited to weaken the availability guarantee.

• One major limitation of the WAS is that it is very difficult to port 
applications that are not windows centric to run on the WAS because it 
needs Microsoft workflow. And no options to install operation systems 
other than Windows is allowed in WAS
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Mesos: A Platform for Fine-Grained 
Resource Sharing in the Data Center

Authors: Benjamin Hindman, Andy Konwinski, Matei
Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy 

Katz, Scott Shenker, Ion Stoica

Presented By: Hilfi Alkaff
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Background

 Gazillions of cluster computing frameworks

Pig

Dryad

Pregel

Percolator

CIEL
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One Framework per Cluster

 Inefficient resource 
usage

 Hard to share data

 Hard to cooperate

Hadoop

Pregel

MPI
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One Framework to Rule Them All

 Common resource sharing layer over which 
diverse frameworks can run

Mesos

Node Node Node Node

Hadoop Pregel
…

Node Node

Hadoop

Node Node

Pregel

…
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Side Benefits

 Run multiple instances of the same framework

 Build specialized frameworks targeting 
particular problem domains
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Objectives

 High utilization of resources

 Diverse frameworks (Current and Future)

 Scalability

 Reliability to machine failures
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Design Elements
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Element 1: Fine-Grained Sharing

Framework 1

Framework 2

Framework 3

Coarse-Grained Sharing (HPC): Fine-Grained Sharing (Mesos):

Storage System (e.g. HDFS) Storage System (e.g. HDFS)

Fw. 1

Fw. 1Fw. 3

Fw. 3 Fw. 2Fw. 2

Fw. 2

Fw. 1

Fw. 3

Fw. 2Fw. 3

Fw. 1

Fw. 1 Fw. 2Fw. 2

Fw. 1

Fw. 3 Fw. 3

Fw. 3

Fw. 2

Fw. 2

+ Improved utilization, responsiveness, data locality  27



Element 2: Resource Offers

Offer available resources to frameworks, let 
them pick which resources to use and which 
tasks to launch

+ Keeps Mesos simple, lets it support future 
frameworks

- Decentralized decisions might not be optimal
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Architecture

 Master: Implements fine-grained sharing across 
frameworks using resource offers

 Scheduler: Registers with the master and select 
which resources to accept from the master

 Executor: Launched on slave nodes to run the 
framework’s tasks

 Slave: It’s a slave
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Event Flow

MPI job

MPI 
scheduler

Hadoop job

Hadoop
scheduler
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Event Flow

MPI job
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Resource offer =
list of (node, availableResources)

E.g.  { (node1, <2 CPUs, 4 GB>),
(node2, <3 CPUs, 2 GB>) }



Event Flow
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Scheduling

 Max-min fairness

 Strict priorities

 **Domain Resource Fairness [NSDI ’11]
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Digression:
Domain Resource Fairness
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 Example:

 Total Resources: <9CPU, 18GB>

 User 1 demand: <1 CPU, 4 GB>

 User 2 demand: <3 CPU, 1 GB>

 Idea: Apply max-min fairness to dominant shares

 Schedule a task with the smallest dominant share

 O(log n) time per decision



Fun Facts

 20k C++

 Frameworks supported: Hadoop, MPI, Torque, 
Spark, HyperTable

 Master fail-over using ZooKeeper

 Isolation using LXC

 Users: Twitter, ML researchers @ Berkeley, 
Conviva, UCSF

 Java, Python, C++ API
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Dynamic Resource Sharing
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Mesos vs Static Partitioning

Compared performance with statically partitioned 
cluster where each framework gets 25% of nodes

Framework Speedup on Mesos

Facebook Hadoop Mix 1.14×

Large Hadoop Mix 2.10×

Spark 1.26×

Torque / MPI 0.96×
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Ran 16 instances of Hadoop on a shared HDFS cluster

Used delay scheduling [EuroSys ’10] in Hadoop to get 
locality (wait a short time to acquire data-local nodes)

Data Locality with Resource Offers

1.7×
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Scalability

Mesos only performs inter-framework scheduling (e.g. 
fair sharing), which is easier than intra-framework 
scheduling
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Result:
Scaled to 50,000 
emulated slaves,
200 frameworks,
100K tasks (30s len)
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Fault Tolerance

Mesos master has only soft state: list of currently 
running frameworks and tasks

Rebuild when frameworks and slaves re-register 
with new master after a failure

Result: fault detection and recovery in ~10 sec
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Review

 Shares clusters efficiently 
among diverse framework

 Very suited to short tasks

 Applies to heterogeneous 
nodes

 Incentive-compatible
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Thoughts

 The “Mesos” programming language?

 Utilizing Software-Defined Networking

 Handling revocation cleaner?

 There are still wasted bandwidths

 Shady fault tolerance mechanism

 Is using soft-state good?

 How good does it scale?
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Untangling Cluster 
Management with Helix

Kishore Gopalakrishna, Shi Lu, Zhen Zhang, Adam 
Silberstein, Kapil Surlaker,Ramesh Subramonian, Bob 

Schulman @ LinkedIn



What is Helix?

• Generic cluster management framework

• Automatic management of partitioned, replicated, 
distributed resources hosted on cluster of nodes

Why Helix?

• Abstract cluster management from the core functionality.
• Quick transformation from a single node system to a 

distributed system.

• Two level scheduling.

• Since the controllers goal is to satisfy state machine 
constraints at all times, use cases like cluster startup, node 
failure, cluster expansion are solved in a similar way



Cluster Management 
Comparisons

Windows Azure 
Storage

Mesos Helix

Node failure
detection & 
recovery

Yes Yes Yes

Dynamic addition 
of nodes

Yes Yes Yes

Auto load-
balancing

Yes Yes Yes

Define custom 
behavior & 
constraints

No No Yes

Multiple Masters No No Yes


