
What do they have in common?

1

Windows Azure Storage
A Highly Available Cloud Storage Service with Strong

Consistency

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold,
Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci,

Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards,
Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul

Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand,
Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan,

Leonidas Rigas @ Microsoft

Presenter: Lionel Li

2

Key Features

• Strong Consistency and Highly Available

• Durability

• Global and Scalable Namespace/Storage
• Consistent accessibility anywhere

• Address exabytes of data and beyond

• Disaster Recovery

• Multi-Tenancy and Cost of Storage
• Multiple customers served from the same shared

storage

3

Windows Azure Cloud Platform

4

Source: http://blogs.msdn.com/

WAS Fundamentals

Global Partitioned Namespace
http(s)://AccountName.<service>.core.windows.net/PartitionName/ObjectName

Storage Abstractions

• Blob (Binary Large Object)
• Named files along with metadata for the file
• http://BobsDVD.blob.core.windows.net/Comedy/FunnyMovie.mp4

• Tables
• Highly scalable non-relational database
• http://sally.table.core.windows.net/Customer

• Queues
• Reliable storage and delivery of messages

5

General Architecture

6

Location Service

• Manages all storage stamp

• Manages account namespace
• Across storage stamps

• Disaster Recovery

• Load Balancing

• Scales additional location and storage

• Respects Location Affinity

• Updates DNS

• Durable – Distributed across 2 geo locations

7

Stream Layer – Fundamentals

• Block – min unit of read/write
• Variable in size (up to 4MB)

• Checksum performed

• Extent – unit of replication
• Sealing

• Size limit of 1GB

• Stream – Ordered list of pointers to extents
• Hierarchical namespace

• Append-only

8

Stream Layer – Architecture

• An append-only DFS

• Data stored as files

• Replication factor of 3

• Re-replicate on:
• EN failure

• Disk failure

• Checksum mismatch

9

Stream Layer – Load Balancing

• Deadline
• Read requests are submitted with a “deadline”

requirement

• EN replies to client that deadline cannot be met if it
determines that it cannot meet the deadline

• Sealing
• Sealed extents are bitwise identical

• Erasure Coding (Reed-Solomon)
• Improves durability

• Data compression from 3x to 1.3x -1.5x

10

Partition Layer – Architecture

11

• Object Tables
• Maintained for each data

abstraction
• RangePartitions assigned

across PS

• Partition Manager
• Several in a stamp
• Heartbeats to PS

• Partition Server
• Servers requests to a set

of RangePartitions

• Partition Map
• Maps RangePartition to

corresponding PS
• Used by FE for request

routing

Partition Layer - RangePartition

12

Partition Layer – Load Balancing

• Reassign RangePartition
• PS has too high work load evenly spread out across

RangePartition

• Split
• Load-based or Size-based

• Merge
• To keep # of RangePartitions proportional to # of PS in a

stamp

13

Load Balancing

• Location Service
• Allocates accounts to storage stamps and manages them

across storage stamps

• Distributed across 2 geographic locations

• Stream Layer
• EN serves a read request only if it can meet deadline

• Partition Layer
• RangePartition Load Balancing – Reassigning, Splitting

and Merging

14

Replication for Consistency

• Intra-Stamp Replication
• Synchronous replication within stamp

• Critical path of customer’s write request

• Durability against hardware failures

• Inter-Stamp Replication
• Asynchronous replication (done in background)

• Geo-redundancy against natural disasters within a
geographical location

15

Failure Handling

16

SMSMSM

paxos

Client (PS)

EN1 EN2 EN3 EN4

Primary Secondary A Secondary B

Append

Seal Extent

failed

Get min Extent length
Seal Extent

Throughput

17

• Random 1KB get/put
requests

• Against 100GB Table

• Random blob get/put
requests

• 4MB blobs per request

Workload Profiles

18

Discussions/Comments

• Paper is more of an engineering effort than introducing new concepts to
the field

• Differences between Windows Azure Storage vs Spanner, Bigtable or
AWS as a storage system

• What are the ways in which client deals with duplicate records? The
solution seems to provide an append-only solution at stream level. Are
no block deletions supported at all? Or will the extent save information
about valid blocks and invalid blocks?

• Still unclear if CAP Theorem was really violated. Synchronous replication
is on the critical path for all customer write requests, so it must happen
before the write is considered complete. Maybe if you partition the
network just right, the synchronous replication guarantee could be
exploited to weaken the availability guarantee.

• One major limitation of the WAS is that it is very difficult to port
applications that are not windows centric to run on the WAS because it
needs Microsoft workflow. And no options to install operation systems
other than Windows is allowed in WAS

19

Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center

Authors: Benjamin Hindman, Andy Konwinski, Matei
Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy

Katz, Scott Shenker, Ion Stoica

Presented By: Hilfi Alkaff

20

Background

 Gazillions of cluster computing frameworks

Pig

Dryad

Pregel

Percolator

CIEL

21

One Framework per Cluster

 Inefficient resource
usage

 Hard to share data

 Hard to cooperate

Hadoop

Pregel

MPI

22

One Framework to Rule Them All

 Common resource sharing layer over which
diverse frameworks can run

Mesos

Node Node Node Node

Hadoop Pregel
…

Node Node

Hadoop

Node Node

Pregel

…

23

Two-Level Scheduling

Side Benefits

 Run multiple instances of the same framework

 Build specialized frameworks targeting
particular problem domains

24

Objectives

 High utilization of resources

 Diverse frameworks (Current and Future)

 Scalability

 Reliability to machine failures

25

Design Elements

26

Element 1: Fine-Grained Sharing

Framework 1

Framework 2

Framework 3

Coarse-Grained Sharing (HPC): Fine-Grained Sharing (Mesos):

Storage System (e.g. HDFS) Storage System (e.g. HDFS)

Fw. 1

Fw. 1Fw. 3

Fw. 3 Fw. 2Fw. 2

Fw. 2

Fw. 1

Fw. 3

Fw. 2Fw. 3

Fw. 1

Fw. 1 Fw. 2Fw. 2

Fw. 1

Fw. 3 Fw. 3

Fw. 3

Fw. 2

Fw. 2

+ Improved utilization, responsiveness, data locality 27

Element 2: Resource Offers

Offer available resources to frameworks, let
them pick which resources to use and which
tasks to launch

+ Keeps Mesos simple, lets it support future
frameworks

- Decentralized decisions might not be optimal

28

Architecture

 Master: Implements fine-grained sharing across
frameworks using resource offers

 Scheduler: Registers with the master and select
which resources to accept from the master

 Executor: Launched on slave nodes to run the
framework’s tasks

 Slave: It’s a slave
29

Event Flow

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave

MPI
executor

Mesos slave

MPI
executor

tasktask

Resource
offer

Pick framework to
offer resources to

Event Flow

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave

MPI
executor

Mesos slave

MPI
executor

tasktask

Pick framework to
offer resources toResource

offer

Resource offer =
list of (node, availableResources)

E.g. { (node1, <2 CPUs, 4 GB>),
(node2, <3 CPUs, 2 GB>) }

Event Flow

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave

MPI
executor

Hadoop
executor

Mesos slave

MPI
executor

tasktask

Pick framework to
offer resources to

task

Framework-
specific

scheduling

Resource
offer

Launches and
isolates executors

Scheduling

 Max-min fairness

 Strict priorities

 **Domain Resource Fairness [NSDI ’11]

33

Digression:
Domain Resource Fairness

34

 Example:

 Total Resources: <9CPU, 18GB>

 User 1 demand: <1 CPU, 4 GB>

 User 2 demand: <3 CPU, 1 GB>

 Idea: Apply max-min fairness to dominant shares

 Schedule a task with the smallest dominant share

 O(log n) time per decision

Fun Facts

 20k C++

 Frameworks supported: Hadoop, MPI, Torque,
Spark, HyperTable

 Master fail-over using ZooKeeper

 Isolation using LXC

 Users: Twitter, ML researchers @ Berkeley,
Conviva, UCSF

 Java, Python, C++ API

35

Dynamic Resource Sharing

36

Mesos vs Static Partitioning

Compared performance with statically partitioned
cluster where each framework gets 25% of nodes

Framework Speedup on Mesos

Facebook Hadoop Mix 1.14×

Large Hadoop Mix 2.10×

Spark 1.26×

Torque / MPI 0.96×
37

Ran 16 instances of Hadoop on a shared HDFS cluster

Used delay scheduling [EuroSys ’10] in Hadoop to get
locality (wait a short time to acquire data-local nodes)

Data Locality with Resource Offers

1.7×

38

Scalability

Mesos only performs inter-framework scheduling (e.g.
fair sharing), which is easier than intra-framework
scheduling

0

0.2

0.4

0.6

0.8

1

-10000 10000 30000 50000

Ta
sk

 S
ta

rt
 O

ve
rh

e
a

d
 (s

)

Number of Slaves

Result:
Scaled to 50,000
emulated slaves,
200 frameworks,
100K tasks (30s len)

39

Fault Tolerance

Mesos master has only soft state: list of currently
running frameworks and tasks

Rebuild when frameworks and slaves re-register
with new master after a failure

Result: fault detection and recovery in ~10 sec

40

Review

 Shares clusters efficiently
among diverse framework

 Very suited to short tasks

 Applies to heterogeneous
nodes

 Incentive-compatible

41

Thoughts

 The “Mesos” programming language?

 Utilizing Software-Defined Networking

 Handling revocation cleaner?

 There are still wasted bandwidths

 Shady fault tolerance mechanism

 Is using soft-state good?

 How good does it scale?

42

Untangling Cluster
Management with Helix

Kishore Gopalakrishna, Shi Lu, Zhen Zhang, Adam
Silberstein, Kapil Surlaker,Ramesh Subramonian, Bob

Schulman @ LinkedIn

What is Helix?

• Generic cluster management framework

• Automatic management of partitioned, replicated,
distributed resources hosted on cluster of nodes

Why Helix?

• Abstract cluster management from the core functionality.
• Quick transformation from a single node system to a

distributed system.

• Two level scheduling.

• Since the controllers goal is to satisfy state machine
constraints at all times, use cases like cluster startup, node
failure, cluster expansion are solved in a similar way

Cluster Management
Comparisons

Windows Azure
Storage

Mesos Helix

Node failure
detection &
recovery

Yes Yes Yes

Dynamic addition
of nodes

Yes Yes Yes

Auto load-
balancing

Yes Yes Yes

Define custom
behavior &
constraints

No No Yes

Multiple Masters No No Yes

