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Sensor Networks 
• A sensor network is a group of specialized transducers with a 

communications infrastructure intended to monitor and 
record conditions at diverse locations 

Sensor Node/Motes 
– Advances in processor , memory and radio technologies have enabled small 

nodes that can perform communication and computation. 

– When the computational power is coupled with transducers, they can be used 
for sensing physical phenomena 

 

 

 

 The typical architecture of the sensor node.1 

[1] Source : http://en.wikipedia.org/wiki/Sensor_node 
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Distributed Sensor Networks 

Source http://cert.ics.uci.edu/sesa2011/Schedule.html  

 
– Challenges in Sensor Networks : 

• Traditional networking models  are not adaptable for sensor networks. 

• Motes have low resources. It is necessary to design operating systems specially for 
sensors. Tiny OS is a popular OS for sensors. 
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“Directed Diffusion : A Scalable and 
Robust Communication Paradigm 

for Sensor Networks” 

Chalermek Intanagonwiwat, 
Ramesh Govindan and 

Deborah Estrin 

MobiCom 2000 
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Energy Conservation is the key…  

• 2 Types of Typical Sensor Networks 
• Large , complex sensors deployed far away from the phenomenon to be  

sensed. 
• Network of sensors having low processing power transmit time 

series of sensed phenomenon to a central node(s) 

 
• Sensors expected to have lifetimes of several days – but 

mostly run on batteries. 
 

• Use hop-by-hop communication –  Radio consumes a lot of 
energy 
 

• Transmitting time series of sensed phenomena is inefficient 
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Directed Diffusion 

• Nodes in sensor networks are anonymous. No way to address individual nodes 

 

• Directed Diffusion – Dissemination mechanism for tasks and events 
– Ex : Animal Tracking 

 

 

 

 

 

• Information Flow 
– Monitoring Task information is propagated to sensors. 

– Sensors collect the requested information and reply to sender 

– Replies routed back to source on reverse path  

– Nodes perform aggregation of information while forwarding replies  

 

Sink (Observer) 

Source 

Sensor 

Wireless Communication Link 
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Traditional Networking v/s Directed Diffusion – A Comparison 

Traditional Networking Directed Diffusion 

End – to – end communication Neighbor-to-neighbor 
communication 

Use routing tables No routing tables – Paths chosen 
empirically 

Global view of network No global view of network. Nodes 
only know of neighbors – Enables 
plug and play operation. 

No application related semantics Application semantics built into 
communication model 

The directed diffusion paradigm is similar to communication 
mechanisms in nature , for ex, ant colonies. Hence, this paradigm is 
highly scalable and robust . 
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 Data Naming 

• Task descriptions & responses are named 

– Use attribute-value pairs. 

– Task Description specifies an interest for data 
matching the parameters specified 

type =  four-legged animal    //detect animal location 
interval = 20 ms                      //send back every 20 ms 
duration = 10 secs                  // for the next 10 secs 
rect = [100, -100, 200,400]  //from sensors within rectangle 

Task Description 

type =  four-legged animal    //detect animal location 
instance = elephant                // instance of this type 
location = [125, 220]              //node location 
intensity = 0.6                         // signal amplitude measure 
confidence = 0.85                 //confidence in the match 
timestamp =  01:20:40        // event generation time 

Response 
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Interests 

• Interests “injected” at some node – Sink 

• Sink periodically transmits active interests to 
neighbors 

– Interests are periodically refreshed 

– Initial Interests are exploratory (use larger intervals) 

• Different options for propagating interests ( flooding, 
geographic routing etc) 

 

 

 

 

 

 

 

 

 

Source 

Event 

Sink 

Interests 

type =  four-legged animal     
interval = 1  s                           
rect = [100, -100, 200,400] 
timestamp = 01:20:40  
expiresAt = 01:30:40 

Sample Interest 
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Gradients 
• Each node contains an interest cache 

• Each Cache entry corresponds to a unique Interest 

• Interest fields can contain several gradients, up to 1 per neighbor 

Interest 1 

Timestamp Gradient 

01:20:40  Neighbor Rate Neighbor Rate Duration 

A 10/sec 10 mins 

B 100/sec 20 mins 

type =  four-legged animal     
interval = 1  s                           
timestamp = 01:20:40  
expiresAt = 01:30:40 

 Interest 1 

Cache Entry 

Source 

Event 

Sink 
Gradients 
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Data Propagation 

• Detection of event triggers collection of 
samples 

• Event description sent to neighbors for which 
gradient is present 

• Nodes drop, filter or re-transmit messages by 
looking into data cache 

• Loop prevention and down-conversion – 
Enabled by coupling application semantics 
with communication mechanism. 
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Reinforcement 

• Low rate interests are used for probing – Conserves energy 

• When an event of interest is detected at the source, this event 
descriptor is communicated to the source. 

• The source then “reinforces” one particular neighbor to pull 
higher data rate events. 
 

 

 

 

 

 

• On receiving an interest with a lower interval, the node 
reinforces one of it’s neighbors similarly. 
 

type =  four-legged animal     
interval = 1  s                           
rect = [100, -100, 200,400] 
timestamp = 01:20:40  
expiresAt = 01:30:40 

Initial Interest 
type =  four-legged animal     
interval = 10  ms                           
rect = [100, -100, 200,400] 
timestamp = 01:20:40  
expiresAt = 01:30:40 

Reinforced Interest 
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Reinforcement (Contd…) 
• How does the node decide which neighbor to reinforce ? 

– Multiple choices  
•  Choose the node from which it first received the latest event matching the interest. 

•  Choose all neighbors from which the new event was received. 

 

 

 

 

 

 

 

• The first choice establishes  a low delay path from sink to 
source -  Interesting outcome. Without explicitly using any 
routing tables, it is possible to establish a low delay path 
between the source and the sink. 

 

 

 

 

Source 

Event 

Sink 
Reinforcement 
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Reinforcement (Contd…) 
• Negative Reinforcements 

– A previously reinforced node may superseded by another - 
Need to negatively reinforce older neighbors  

• Passive reinforcement – Implicit . Use timeouts 

• Explicit reinforcement – Re send interests with lower 
data rate. 

 

• Using Reinforcements for Repair 
– Intermediate  nodes could also initiate reinforcement if they detect 

link failure with neighbors – enables self healing 
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Experimental Evaluation 
• ns-2 simulator used to simulate MAC layer 

• Sensor fields vary from 50 – 250 nodes in increments of 50 nodes 

• 50 node sensor field generated by randomly placing the nodes in a 160m x 160m square. 

• Benchmarks :  

– 1) Flooding 

– 2) Omniscient multicast 
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Experimental Evaluation 
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Experimental Evaluation 
Impact of node failures 

Distinct Event Delivery Ratio 



18/24 

Experimental Evaluation 
 Impact of negative reinforcement 

Average dissipated energy 
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Experimental Evaluation 

Average Dissipated Energy 

Impact of duplicate suppression 
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Discussion 
• Is the ISO/OSI model for networking over-relied on for even ad-hoc cases ? 

– ISO/OSI model was designed for connecting multiple LAN segments over long 
distances. But, the huge popularity of TCP/IP means that it is being used 
everywhere. 

• Named Data : Can the concept of Named Data used here be used in traditional networking as 
well ? 

• Method of reinforcement – Event description has to be sent to the source before 
reinforcement can occur – Could we miss events ? 

• How generic is the approach in Directed Diffusion for other applications ?  

• Discussions from Piazza 

• Since paths are chosen without a global view of the network, they 
could be inefficient globally. 

• Congestion is not considered in evaluation 

• Memory requirements of sensor nodes & interest look up expense 
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“A Review of Current Routing 
Protocols for Ad-Hoc Mobile Wireless 

Networks” 
    Elizabeth M.Royer, Chai-Keoing Toh 
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Wireless Networks 
• Wireless networks are extremely popular today. Every 

smartphone today has multiple wireless capabilities. 
(Wi-fi, NFC etc) 

 

• 2 types of mobile networks : 
– Infra-structure based : Use a centralised co-ordinator 

– Ad-hoc networks: Consists of equal – peers (Although one 
among them may be elected as head). 

 

Ad-hoc wireless networks have multiple use cases. For 
ex, It could be use in search and rescue operations 
when mobile networks are down.  
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Ad Hoc Routing Protocols 

• Ad-Hoc Routing protocols are classified into the following 
types : 
– Table Driven 

– Source initiated(demand driven) 
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• Table Driven  
• Maintain consistent, up-to date routing information from 

each node to every other node in the network. 

• Changes in link status propagated to all users to maintain a 
consistent view 

 

• Source – Initiated On –Demand Routing 
• Routes created only when desired by the source node. 

• When a packet needs to be routed, the node initiates a 
route discovery process. 

• The established route is maintained by a route 
maintenance procedure. 
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Backup Slides 

• Experimental Setup 
– Sensor fields vary from 50 – 250 nodes in 

increments of 50 nodes 

– 50 node sensor field generated by randomly 
placing the nodes in a 160m x 160m 

– ns-2 simulator implements a 1.6 Mbps 802.11 
MAC layer 

– Idle Power Dissipation - 35 mW 

– Receive Power Dissipation - 395 mW 

– Transmit Power Dissipation  - 660 mW 
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Multicast Trees 
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Data Propagation 

• On detecting a target, a sensor searches its interest cache for matching interest 
entry & schedules collection of data samples at the highest requested event rate 
among its gradients. 

• An event description is sent to each neighbor in the interest cache for which a 
gradient is present. 

• On receiving a data message from a neighbor, a node matches it’s attributes with 
the interest entries.  
– Message is dropped if no matching  interest entry is found. 

– There is a data cache associated with each interest entry  that keeps track of recently sent items. If a 
match is found, the message is silently dropped – Prevents loops 

– If no matching data cache entry is found, the message is added to the data cache and re-sent to 
neighbors. 

– Data cache is also used to determine the rate of incoming data – Allows down-conversion to 
appropriate gradient by filtering and aggregation of event messages  

 

• Loop prevention and down-conversion – Enabled by coupling application 
semantics with communication mechanism. 
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Experience from a Decade of 
TinyOS Development 

Philip Levis  
OSDI 2012 

(presenter: Shannon Chen) 
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The Author 

• Philip Levis 

• Associate Prof @ Stanford 

• Got involved in TinyOS project 
@ Berkeley in 2005 (PhD) 

• TinyOS 1.x -> TinyOS 2.x 

29 
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The Paper 

• The evolvement/lessons learned of TinyOS 
• TinyOS targets WSN  

(limited RAM, power, CPU; event-driven) 
• 1999 

– A few Perl scripts that generate C code 
– Used in a few internal projects (SmartDust) in UCB 

• 2012 
– nesC: a langue developed along with TinyOS 
– Broadly used across industry and academia 
– 25,000 downloads per year; hundreds for papers 

 

30 
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The Design Goal 

1. Minimize resource use 
 
 
 
 

2. Bug prevention 

– “Debugging is notoriously hard in sensor networks”  

– Programing -> deployment <-> remote debug 

• Requiring little state 
(RAM) 

• Tight code (ROM) 

31 
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The Approaches 

• RAM Allocation 

 

 

 

 

• Isolation 

• Language 

 

 

 

 

• Components 

Goals 
1. Minimize resource use 

2. Bug prevention 

32 
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RAM Allocation 

• TinyOS pre-1.0 (C) 
– Client allocate memory for their timer state and 

pass the pointer to the timer system 

– Timer: 10 bytes; pointer: 2 bytes (20% overhead) 

• TinyOS 1.0 (nesC) 
– Fixed array, fixed length 

– Compile time function: int unique(string) 

– Often waste even more  
memory 

 

 

#define TS unique(“T”) 
myTimer = Timers[TS]; 

33 

A0 = unique(“A”); 
A1 = unique(“A”); 
A2 = unique(“A”); 
A3 = unique(“A”); 
A4 = unique(“A”); 
B0 = unique(“B”); 
B1 = unique(“B”); 
B2 = unique(“B”); 
C0 = unique(“C”); 
B3 = unique(“B”); 

A0 = 3; 
A1 = 0; 
A2 = 2; 
A3 = 4; 
A4 = 1; 
B0 = 2; 
B1 = 1; 
B2 = 3; 
C0 = 0; 
B3 = 0; 
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RAM Allocation 

• TinyOS 1.1 (nesC) 

– Fixed array, fixed length, decided on compile 

– int unique(string) 

– int uCount(string) 

 

 

 

– Allocate the minimum amount of memory needed 

 

#define TN uCount(“T”) 
Timer_state Timers[TN]; 

#define TS unique(“T”) 
myTimer = Timers[TS]; 

34 
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Isolation 

• TinyOS 1.x 

 

 

 
– Fixed queue length 

– Queue full -> re-invoke after some time 
   -> need timer (task) 

– Error handling -> need RAM 

• Conclusion: shared global memory pool is  
bug-prone and a waste of RAM.  

Task Queue 

35 
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Isolation 

• TinyOS 2.x: Static Virtualization 
– No more shared global memory (isolation) 

 

 

 

 

 

 

– The behavior of the  API 
is solely based on the caller 

AMSenderC: 
 
#define QS unique(“Q”) 
mySlot = Queue[QS]; 

AMQueueC: 
 
#define QN uCount(“Q”) 
task Queue[QN]; 
While(1) 

for i=0..QN-1 
check(Queue[i]); 

36 
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Language 

• nesC 

– Generic code 

– Compile time memory allocation 

– Bug prevention 

– Move away from C -> raise the bar to entry 

“Making it harder to write buggy code 
had the unfortunate result of making it 

just harder to write code.” 

37 
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Components 

• Fine-grained components 

• Code re-use, privacy, security, etc. 

• Intend to make lower level modification easier 

• Commercial use  

• Steep learning curve 

• Drives users away 
(industry and academia) 

 

38 
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The Island Syndrome 

• Arduino 

 

 

 

 

 

• Contiki 

– Pure C 

– Traditional OS 
structure 

 

 

Missed being a platform for 
simple sensing apps 

Missed being a platform 
for Internet of Things 

39 

Hobbyist 

Academia 

Industry 
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Conclusion 

• “We should have avoid the island syndrome” 

• Easy entry 

• Should not focus only on academic use 

 

• Public interactive documentation: wiki 

• Late industrial involvement 

40 
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Discussion 

• Is popularity that important? 

– Easy entry  
vs.  
well-defined, well-structured, re-use enabled, 
bug-prevented code 

• Contradicting purposes 

– Industrial vs. academic 

– Application level production  
vs. lower level investigation 

41 
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Discussion (From Piazza) 

• What effort has TinyOS made on energy 
efficiency? 

• Will debuggers help? 
(e.g., powerful debugger + C) 

• “CS graduate students have very little 
motivation to actively support 
users”: publish or perish 

• Future plans?  (e.g., splitting the system) 
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