Sensor Networks

Abhishek Sreenath & Shannon Chen

February 21, 2013

Sensor Networks

* A sensor networkis a group of specialized transducers with a
communications infrastructure intended to monitor and

record conditions at diverse locations

Sensor Node/Motes

— Advancesin processor, memory and radio technologies have enabled small
nodes that can perform communicationand computation.

— When the computational poweris coupled with transducers, they can be used
for sensing physical phenomena

Transceiver
l

Micro-controller

R’
|E>d:erna| Mernary |

The typical architecture of the sensor node.!

BIUNO 5 J3Mo g

Sensor 2

[1] Source : http://en.wikipedia.org/wiki/Sensor_node

Distributed Sensor Networks

Ecosystemn Monitoring ; R AT e e
Geologic e Sensor Web) Weather Forecasting
Sensor Web ' [Sensor Web

»
\/

- Buoy -
Sensor Web

— Challenges in Sensor Networks :
* Traditionalnetworking models are not adaptable for sensor networks.

 Motes havelow resources. It is necessary to design operating systems specially for
sensors. Tiny OS is a popular OS for sensors.

3/24

“Directed Diffusion : A Scalable and

Robust Communication Paradigm
for Sensor Networks”

| S—

Chalermek Intanagonwiwat,
Ramesh Govindan and
Deborah Estrin

MobiCom 2000

Energy Conservation is the key...

2 Types of Typical Sensor Networks

 Large, complex sensors deployed far away from the phenomenon to be
sensed.

 Network of sensors having low processing power transmit time
series of sensed phenomenon to a central node(s)

Sensors expected to have lifetimes of several days — but
mostly run on batteries.

Use hop-by-hop communication — Radio consumes a lot of
energy

Transmitting time series of sensed phenomena is inefficient

Directed Diffusion

* Nodesinsensor networks are anonymous. No way to address individual nodes

* Directed Diffusion — Dissemination mechanism for tasks and events
— Ex: Animal Tracking

. Sensor
‘ Source \ — Wireless Communication Link
Sink (Observer) -
* Information Flow

— Monitoring Task information is propagated to sensors.
— Sensors collect the requested information and reply to sender
— Replies routed back to source on reverse path

— Nodes perform aggregation of information while forwarding replies ::3. * et ,
....- * 9 .
.-.3: — * % .
.e . ® [
L] [] ..
s & 8 ®

Traditional Networking v/s Directed Diffusion — A Comparison

Traditional Networking Directed Diffusion

End — to — end communication Neighbor-to-neighbor
communication

Use routing tables No routing tables— Paths chosen
empirically
Global view of network No global view of network. Nodes

only know of neighbors —Enables
plug and play operation.

No application related semantics Application semanticsbuiltinto
communication model

The directed diffusion paradigm is similar to communication
mechanisms in nature, for ex, ant colonies. Hence, this paradigmis

highly scalableand robust.
7/24

Data Naming

* Task descriptions & responses are named

— Use attribute-value pairs.

— Task Description specifies an interest for data
matching the parameters specified

Task Description

type = four-legged animal //detect animal location
interval =20 ms //send back every 20 ms
duration = 10 secs // for the next 10 secs

rect =[100, -100, 200,400] //from sensors within rectangle

Response

type = four-legged animal //detect animal location
instance = elephant // instance of this type
location = [125, 220] //node location

intensity = 0.6 // signal amplitude measure
confidence =0.85 //confidence in the match
timestamp = 01:20:40 // event generation time

Interests

* Interests “injected” at some node — Sink

* Sink periodically transmits active interests to
neighbors
— Interests are periodically refreshed

— Initial Interests are exploratory (use larger intervals)

» Different options for propagating interests (flooding,
geographic routing etc)

--------- <€----- Interest
Sample Interest , .< /’R nterests

_ Event . w . N
type = four-legged animal T N U7 S
interval=1 s / L< \) ’; p .
rect =[100,-100, 200,400] Source ‘ ! /. 'O Sink
timestamp = 01:20:40 ‘e _ :\(/ e AR ,/
expiresAt=01:30:40 N e RN ’

9/24

Gradients

* Each node contains an interest cache
* Each Cache entry corresponds to a unique Interest
* Interest fields can contain several gradients, up to 1 per neighbor

Event

Gradients

Source (Sink

N
7

Cache Entry

nterest | | |

Timestamp Gradient

o . interval=1 s
SCCAN Neighbor | Rate | Duration JERNRRIEIA

Interest 1
type = four-legged animal

. expiresAt=01:30:40
A 10/sec 10 mins P

B 100/sec 20 mins 10/24

Data Propagation

Detection of event triggers collection of
samples

Event description sent to neighbors for which
gradient is present

Nodes drop, filter or re-transmit messages by
looking into data cache

Loop prevention and down-conversion —
Enabled by coupling application semantics
with communication mechanism.

Reinforcement

Low rate interests are used for probing — Conserves energy

When an event of interest is detected at the source, this event
descriptor is communicated to the source.

The source then “reinforces” one particular neighbor to pull
higher data rate events.

Initial Interest Reinforced Interest
type = four-legged animal type = four-legged animal
interval=1 s interval=10 ms

rect = [100, -100, 200,400] rect =[100, -100, 200,400]
timestamp =01:20:40 timestamp =01:20:40
expiresAt=01:30:40 expiresAt=01:30:40

On receiving an interest with a lower interval, the node
reinforces one of it’s neighbors similarly.

Reinforcement (Contd...)

How does the node decide which neighbor to reinforce ?
— Multiple choices

Choose the node from which it first received the latest event matching the interest.
Choose all neighbors from which the new event was received.

Reinforcement

Sink

* The first choice establishes a low delay path from sink to
source - Interestingoutcome. Without explicitly using any

routing tables, it is possible to establish a low delay path
between the source and the sink.

13/24

Reinforcement (Contd...)

* Negative Reinforcements

— A previously reinforced node may superseded by another -
Need to negatively reinforce older neighbors

» Passive reinforcement — Implicit . Use timeouts

* Explicit reinforcement— Re send interests with lower
data rate.

* Using Reinforcements for Repair

— Intermediate nodes could also initiate reinforcement if they detect
link failure with neighbors — enables self healing

Experimental Evaluation

ns-2 simulator used to simulate MAC layer

Sensor fields vary from 50 — 250 nodes in increments of 50 nodes

50 node sensor field generated by randomly placing the nodes in a 160m x 160m square.

looding
,\.\Omnlsment Multicast
A A v A A
Diffusion

Benchmarks :
— 1) Flooding
— 2) Omniscient multicast
0.018
0.0161
? § 0.014F
Q L 0.012F
W g
T > 0.01f
Lo
g ' 0.008F
.(7) m
D @ 0.0061
03
L Z 0.0041
2%
o % 0.0021
= O
<3 0
0

50 100 150 200 250

Network Size
Average Dissipated Energy

300

15/24

Experimental Evaluation

0.35

Flooding
0.25

T

0.2 +

0.15 }

Average Delay (secs)

0.05 Diffusion Omniscient Multicast

OO 50 100 150 200 250 300

Network Size

T
|

Average delay

16/24

Distinct EBwvent Delivery Ratic

Experimental Evaluation

0.4

0.3

0.2

01r

Impact of node failures

Mo node failure —ll— 7
10% simultanecus node failures —3—
20% simlultane-:l.ls node f;ailures ——

| |
1] &0 100 160 200 250 300
HNetworlk Size

Distinct Event Delivery Ratio

Experimental Evaluation
Impact of negative reinforcement

0.014

0.mz

0.

0.008

0.006

0.004 -

Average Dissipated Bnergy

0,002 - -

{Joules/Node/ Received Distinct Ewvent)

With negative reinforcement —ill—
Without n?gative reinfu:urcflement —8—

1 1
i} &0 100 150 200 260 300
Hetwork Size

Average dissipated energy

Experimental Evaluation
Impact of duplicate suppression

Average Dissipated Energy

{iJToules /HNode/ Received Distinct Ewvent)

0.03

0.025

0.02

0.015

0.m

0.005

— — — = u _
with suppression —ill—
| | | Iwﬂhnutsupprﬁsmun ——
&0 100 150 200 250 300

Networlk Size

Average Dissipated Energy

Discussion

Is the ISO/OSI model for networking over-relied on for even ad-hoc cases ?

— 1SO/0SI model was designed for connecting multiple LAN segments over long
distances. But, the huge popularity of TCP/IP means that it is being used
everywhere.

Named Data : Can the concept of Named Data used here be used in traditional networking as
well ?

Method of reinforcement — Event description has to be sent to the source before
reinforcement can occur — Could we miss events ?

How generic is the approach in Directed Diffusion for other applications ?

Discussions from Piazza

e Since paths are chosen without a global view of the network, they
could be inefficient globally.

* Congestion is not considered in evaluation
* Memory requirements of sensor nodes & interest look up expense

“A Review of Current Routing
Protocols for Ad-Hoc Mobile Wireless
Networks”

Elizabeth M.Royer, Chai-Keoing Toh

Wireless Networks

 Wireless networks are extremely popular today. Every
smartphone today has multiple wireless capabilities.
(Wi-fi, NFC etc)

e 2 types of mobile networks:
— Infra-structure based : Use a centralised co-ordinator

— Ad-hoc networks: Consists of equal — peers (Although one
among them may be elected as head).

Ad-hoc wireless networks have multiple use cases. For
ex, It could be use in search and rescue operations
when mobile networks are down.

Ad Hoc Routing Protocols

* Ad-Hoc Routing protocols are classified into the following

types:

— Table Driven

— Source initiated(demanddriven)

Ad-Hoc Routing Protocols

Table Driven Source-initiated
On-Demand Driven
DSDV WRP AODV DSRH LMR ABR
L l '
CGSR M

TORA SSHRH

23/24

e Table Driven

* Maintain consistent, up-to date routing information from
each node to every other node in the network.

 Changes in link status propagated to all users to maintain a
consistent view

* Source — Initiated On —Demand Routing

* Routes created only when desired by the source node.
* When a packet needs to be routed, the node initiates a
route discovery process.

* The established route is maintained by a route
maintenance procedure.

Backup Slides

* Experimental Setup

— Sensor fields vary from 50 — 250 nodes in
increments of 50 nodes

— 50 node sensor field generated by randomly
placing the nodes in a 160m x 160m

— ns-2 simulator implements a 1.6 Mbps 802.11
MAC layer

— Idle Power Dissipation - 35 mW
— Receive Power Dissipation - 395 mW
— Transmit Power Dissipation - 660 mW

Multicast Trees

® .S
o
."--';/
R R4
‘ P /
. NS
et
---------- == N
R10%=— N

26/24

Data Propagation

 Ondetectinga target, a sensor searches its interest cache for matchinginterest
entry & schedules collection of datasamples at the highest requested event rate
among its gradients.

* Aneventdescriptionis sent to each neighborin the interest cache for which a
gradientis present.

* Onreceiving a data message from a neighbor, a node matchesit’s attributes with
the interest entries.

— Messageis dropped if no matching interest entry is found.

— There is a data cache associated with each interest entry that keeps track of recently sent items. Ifa
match is found, the message is silently dropped — Prevents loops

— Ifnomatching data cache entry is found, the message is added to the data cache and re-sentto
neighbors.

— Data cacheis also used to determine the rate of incoming data — Allows down-conversion to
appropriate gradient by filtering and aggregation of event messages

* Loop preventionand down-conversion—Enabled by couplingapplication
semantics with communication mechanism.

Experience from a Decade of
TinyOS Development

Philip Levis
OSDI 2012
(presenter: Shannon Chen)

28/24

The Author

* Philip Levis
 Associate Prof @ Stanford

* Gotinvolved in TinyOS project
@ Berkeley in 2005 (PhD)

(%]
°0 Q& rb‘sg .§“9 og'
& g 9]) &
O Q & ~ &
& %) $ (':Jr S
AS 9 Ao
@‘3‘ c} (2N

'z;
-:‘a“

bidirectional interfaces, atomic, generics, safe,
parameterized interfaces uniqueCount nx_types threads

29 o

The Paper

The evolvement/lessons learned of TinyOS
TinyOS targets WSN

(limited RAM, power, CPU; event-driven)
1999

— A few Perl scripts that generate C code

— Used in a few internal projects (SmartDust)in UCB
2012

— nesC: a langue developed along with TinyOS
— Broadly used across industry and academia
— 25,000 downloads per year; hundreds for papers

30

The Design Goal

Minimize resource use

Model ROM RAM Sleep Price
F2002 1kB 128B 1.3pA 50.94
F1232 skB 2568 l.ouA $2.73
F135 16kB 512B 2.0uA $6.54
Fl68 ARKB 20458 2.0uA 59.11
Flall 48kB 10240B | 2.0uA $12.86

(a) T1 MSP430 Microcontrollers

Bug prevention

— “Debugging is notoriously hard in sensor networks

* Requiring little state
(RAM)
e Tight code (ROM)

— Programing -> deployment <-> remote debug

31

7

31/24

The Approaches

* RAM Allocation ¢ Language

Goals
1. Minimize resource use
2. Bug prevention

* |solation * Components

32

N e

= unique(“A");

unique(“A”) ;
= unique(“A") ;
= unique(“A");
= unique(“A");
= unique(“B”);

N e N e

- N e

N e

N e

= unique(“B"”) ;
unique(“B”) ;
unique(“C”) ;
= unique(“B”) ;

. N e

O O N -~ N—-2DBDNOWA

N e

RAM Allocation

* TinyOS 1.1 (nesC)
— Fixed array, fixed length, decided on compile
—1nt unique(string)

—1nt uCount(string)

#define TS unique(“T") #define TN uCount (“T")
myTimer = Timers[TS]; Timer state Timers[TN];

/4 /4
— Allocate the minimum amount of memory needed

34

Isolation
* TinyOS 1.x

Task Queue

] >

— Fixed queue length

— Queue full -> re-invoke after some time
-> need timer (task)

— Error handling -> need RAM

* Conclusion: shared global memory pool is
bug-prone and a waste of RAM.

35 35/24

Isolation

* TinyOS 2.x: Static Virtualization
— No more shared global memory (isolation)

fl_l‘-._ﬂ?r_%rjg_e_r_[;“ _ AMQueueC AMSenderC:

N - #define QS unique(“Q”)
S —— . m. mySlot = Queue[QS];
t___________. uniqueCount 7
; """""" } unique AMQueueC:

S,

#define QN uCount (“Q”)

P Send interface task Queue[ON]:

. While(1)
— The behavior of the API for i=0..QN-1
is solely based on the caller check(Quenelil)

_ y

36 36/24

Language

* nesC
— Generic code
— Compile time memory allocation

— Bug prevention
— Move away from C -> raise the bar to entry

...

,' “Making it harder to write buggy code
. had the unfortunate result of making it
. just harder to write code.”

Components

Fine-grained components

Code re-use, privacy, security, etc.

Intend to make lower level modification easier

Commercial use
Steep learning curve

Drives users away
(industry and academia)

TimerC

VirtualizeTimerC

AlarmToTimerC CounterToTimeC

The Island Syndrome

Missed being a platform for
simple sensing apps

e Arduino

Fetch'-O-Matic 2
Build This
AwesomeDog
Ball Launcher

Missed being a platform
for Internet of Things

* Contiki
— Pure C
— Traditional OS
structure
{ Academia ::
; Industry ::

39/24

Conclusion

* “We should have avoid the island syndrome”
* Easy entry
* Should not focus only on academic use

 Publicinteractive documentation: wiki
e Late industrial involvement

40

Discussion

* |s popularity that important?
— Easy entry
VS.
well-defined, well-structured, re-use enabled,
bug-prevented code
* Contradicting purposes
— Industrial vs. academic

— Application level production
vs. lower level investigation

41

Discussion (From Piazza)

What effort has TinyOS made on energy
efficiency?

Will debuggers help?

(e.g., powerful debugger + C)

“CS graduate students have very little
motivation to actively support
users”: publish or perish

Future plans? (e.g., splitting the system)

42

