
1/24

Sensor Networks

Abhishek Sreenath & Shannon Chen

February 21, 2013

2/24

Sensor Networks
• A sensor network is a group of specialized transducers with a

communications infrastructure intended to monitor and
record conditions at diverse locations

Sensor Node/Motes
– Advances in processor , memory and radio technologies have enabled small

nodes that can perform communication and computation.

– When the computational power is coupled with transducers, they can be used
for sensing physical phenomena

 The typical architecture of the sensor node.1

[1] Source : http://en.wikipedia.org/wiki/Sensor_node

3/24

Distributed Sensor Networks

Source http://cert.ics.uci.edu/sesa2011/Schedule.html

– Challenges in Sensor Networks :

• Traditional networking models are not adaptable for sensor networks.

• Motes have low resources. It is necessary to design operating systems specially for
sensors. Tiny OS is a popular OS for sensors.

4/24

“Directed Diffusion : A Scalable and
Robust Communication Paradigm

for Sensor Networks”

Chalermek Intanagonwiwat,
Ramesh Govindan and

Deborah Estrin

MobiCom 2000

5/24

Energy Conservation is the key…

• 2 Types of Typical Sensor Networks
• Large , complex sensors deployed far away from the phenomenon to be

sensed.
• Network of sensors having low processing power transmit time

series of sensed phenomenon to a central node(s)

• Sensors expected to have lifetimes of several days – but

mostly run on batteries.

• Use hop-by-hop communication – Radio consumes a lot of
energy

• Transmitting time series of sensed phenomena is inefficient

6/24

Directed Diffusion

• Nodes in sensor networks are anonymous. No way to address individual nodes

• Directed Diffusion – Dissemination mechanism for tasks and events
– Ex : Animal Tracking

• Information Flow
– Monitoring Task information is propagated to sensors.

– Sensors collect the requested information and reply to sender

– Replies routed back to source on reverse path

– Nodes perform aggregation of information while forwarding replies

Sink (Observer)

Source

Sensor

Wireless Communication Link

7/24

Traditional Networking v/s Directed Diffusion – A Comparison

Traditional Networking Directed Diffusion

End – to – end communication Neighbor-to-neighbor
communication

Use routing tables No routing tables – Paths chosen
empirically

Global view of network No global view of network. Nodes
only know of neighbors – Enables
plug and play operation.

No application related semantics Application semantics built into
communication model

The directed diffusion paradigm is similar to communication
mechanisms in nature , for ex, ant colonies. Hence, this paradigm is
highly scalable and robust .

8/24

 Data Naming

• Task descriptions & responses are named

– Use attribute-value pairs.

– Task Description specifies an interest for data
matching the parameters specified

type = four-legged animal //detect animal location
interval = 20 ms //send back every 20 ms
duration = 10 secs // for the next 10 secs
rect = [100, -100, 200,400] //from sensors within rectangle

Task Description

type = four-legged animal //detect animal location
instance = elephant // instance of this type
location = [125, 220] //node location
intensity = 0.6 // signal amplitude measure
confidence = 0.85 //confidence in the match
timestamp = 01:20:40 // event generation time

Response

9/24

Interests

• Interests “injected” at some node – Sink

• Sink periodically transmits active interests to
neighbors

– Interests are periodically refreshed

– Initial Interests are exploratory (use larger intervals)

• Different options for propagating interests (flooding,
geographic routing etc)

Source

Event

Sink

Interests

type = four-legged animal
interval = 1 s
rect = [100, -100, 200,400]
timestamp = 01:20:40
expiresAt = 01:30:40

Sample Interest

10/24

Gradients
• Each node contains an interest cache

• Each Cache entry corresponds to a unique Interest

• Interest fields can contain several gradients, up to 1 per neighbor

Interest 1

Timestamp Gradient

01:20:40 Neighbor Rate Neighbor Rate Duration

A 10/sec 10 mins

B 100/sec 20 mins

type = four-legged animal
interval = 1 s
timestamp = 01:20:40
expiresAt = 01:30:40

 Interest 1

Cache Entry

Source

Event

Sink
Gradients

11/24

Data Propagation

• Detection of event triggers collection of
samples

• Event description sent to neighbors for which
gradient is present

• Nodes drop, filter or re-transmit messages by
looking into data cache

• Loop prevention and down-conversion –
Enabled by coupling application semantics
with communication mechanism.

12/24

Reinforcement

• Low rate interests are used for probing – Conserves energy

• When an event of interest is detected at the source, this event
descriptor is communicated to the source.

• The source then “reinforces” one particular neighbor to pull
higher data rate events.

• On receiving an interest with a lower interval, the node
reinforces one of it’s neighbors similarly.

type = four-legged animal
interval = 1 s
rect = [100, -100, 200,400]
timestamp = 01:20:40
expiresAt = 01:30:40

Initial Interest
type = four-legged animal
interval = 10 ms
rect = [100, -100, 200,400]
timestamp = 01:20:40
expiresAt = 01:30:40

Reinforced Interest

13/24

Reinforcement (Contd…)
• How does the node decide which neighbor to reinforce ?

– Multiple choices
• Choose the node from which it first received the latest event matching the interest.

• Choose all neighbors from which the new event was received.

• The first choice establishes a low delay path from sink to
source - Interesting outcome. Without explicitly using any
routing tables, it is possible to establish a low delay path
between the source and the sink.

Source

Event

Sink
Reinforcement

14/24

Reinforcement (Contd…)
• Negative Reinforcements

– A previously reinforced node may superseded by another -
Need to negatively reinforce older neighbors

• Passive reinforcement – Implicit . Use timeouts

• Explicit reinforcement – Re send interests with lower
data rate.

• Using Reinforcements for Repair
– Intermediate nodes could also initiate reinforcement if they detect

link failure with neighbors – enables self healing

15/24

Experimental Evaluation
• ns-2 simulator used to simulate MAC layer

• Sensor fields vary from 50 – 250 nodes in increments of 50 nodes

• 50 node sensor field generated by randomly placing the nodes in a 160m x 160m square.

• Benchmarks :

– 1) Flooding

– 2) Omniscient multicast

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 50 100 150 200 250 300

A
v
e

ra
g
e

 D
is

s
ip

a
te

d
 E

n
e

rg
y

(J
o

u
le

s
/N

o
d
e

/R
e

c
e

iv
e

d
 E

v
e

n
t)

Network Size

Diffusion

Omniscient Multicast

Flooding

Average Dissipated Energy

16/24

Experimental Evaluation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300

A
v
e

ra
g
e

 D
e

la
y
 (

s
e

c
s
)

Network Size

Diffusion Omniscient Multicast

Flooding

Average delay

17/24

Experimental Evaluation
Impact of node failures

Distinct Event Delivery Ratio

18/24

Experimental Evaluation
 Impact of negative reinforcement

Average dissipated energy

19/24

Experimental Evaluation

Average Dissipated Energy

Impact of duplicate suppression

20/24

Discussion
• Is the ISO/OSI model for networking over-relied on for even ad-hoc cases ?

– ISO/OSI model was designed for connecting multiple LAN segments over long
distances. But, the huge popularity of TCP/IP means that it is being used
everywhere.

• Named Data : Can the concept of Named Data used here be used in traditional networking as
well ?

• Method of reinforcement – Event description has to be sent to the source before
reinforcement can occur – Could we miss events ?

• How generic is the approach in Directed Diffusion for other applications ?

• Discussions from Piazza

• Since paths are chosen without a global view of the network, they
could be inefficient globally.

• Congestion is not considered in evaluation

• Memory requirements of sensor nodes & interest look up expense

21/24

“A Review of Current Routing
Protocols for Ad-Hoc Mobile Wireless

Networks”
 Elizabeth M.Royer, Chai-Keoing Toh

22/24

Wireless Networks
• Wireless networks are extremely popular today. Every

smartphone today has multiple wireless capabilities.
(Wi-fi, NFC etc)

• 2 types of mobile networks :
– Infra-structure based : Use a centralised co-ordinator

– Ad-hoc networks: Consists of equal – peers (Although one
among them may be elected as head).

Ad-hoc wireless networks have multiple use cases. For
ex, It could be use in search and rescue operations
when mobile networks are down.

23/24

Ad Hoc Routing Protocols

• Ad-Hoc Routing protocols are classified into the following
types :
– Table Driven

– Source initiated(demand driven)

24/24

• Table Driven
• Maintain consistent, up-to date routing information from

each node to every other node in the network.

• Changes in link status propagated to all users to maintain a
consistent view

• Source – Initiated On –Demand Routing
• Routes created only when desired by the source node.

• When a packet needs to be routed, the node initiates a
route discovery process.

• The established route is maintained by a route
maintenance procedure.

25/24

Backup Slides

• Experimental Setup
– Sensor fields vary from 50 – 250 nodes in

increments of 50 nodes

– 50 node sensor field generated by randomly
placing the nodes in a 160m x 160m

– ns-2 simulator implements a 1.6 Mbps 802.11
MAC layer

– Idle Power Dissipation - 35 mW

– Receive Power Dissipation - 395 mW

– Transmit Power Dissipation - 660 mW

26/24

Multicast Trees

27/24

Data Propagation

• On detecting a target, a sensor searches its interest cache for matching interest
entry & schedules collection of data samples at the highest requested event rate
among its gradients.

• An event description is sent to each neighbor in the interest cache for which a
gradient is present.

• On receiving a data message from a neighbor, a node matches it’s attributes with
the interest entries.
– Message is dropped if no matching interest entry is found.

– There is a data cache associated with each interest entry that keeps track of recently sent items. If a
match is found, the message is silently dropped – Prevents loops

– If no matching data cache entry is found, the message is added to the data cache and re-sent to
neighbors.

– Data cache is also used to determine the rate of incoming data – Allows down-conversion to
appropriate gradient by filtering and aggregation of event messages

• Loop prevention and down-conversion – Enabled by coupling application
semantics with communication mechanism.

28/24

Experience from a Decade of
TinyOS Development

Philip Levis
OSDI 2012

(presenter: Shannon Chen)

29/24

The Author

• Philip Levis

• Associate Prof @ Stanford

• Got involved in TinyOS project
@ Berkeley in 2005 (PhD)

• TinyOS 1.x -> TinyOS 2.x

29

30/24

The Paper

• The evolvement/lessons learned of TinyOS
• TinyOS targets WSN

(limited RAM, power, CPU; event-driven)
• 1999

– A few Perl scripts that generate C code
– Used in a few internal projects (SmartDust) in UCB

• 2012
– nesC: a langue developed along with TinyOS
– Broadly used across industry and academia
– 25,000 downloads per year; hundreds for papers

30

31/24

The Design Goal

1. Minimize resource use

2. Bug prevention

– “Debugging is notoriously hard in sensor networks”

– Programing -> deployment <-> remote debug

• Requiring little state
(RAM)

• Tight code (ROM)

31

32/24

The Approaches

• RAM Allocation

• Isolation

• Language

• Components

Goals
1. Minimize resource use

2. Bug prevention

32

33/24

RAM Allocation

• TinyOS pre-1.0 (C)
– Client allocate memory for their timer state and

pass the pointer to the timer system

– Timer: 10 bytes; pointer: 2 bytes (20% overhead)

• TinyOS 1.0 (nesC)
– Fixed array, fixed length

– Compile time function: int unique(string)

– Often waste even more
memory

#define TS unique(“T”)
myTimer = Timers[TS];

33

A0 = unique(“A”);
A1 = unique(“A”);
A2 = unique(“A”);
A3 = unique(“A”);
A4 = unique(“A”);
B0 = unique(“B”);
B1 = unique(“B”);
B2 = unique(“B”);
C0 = unique(“C”);
B3 = unique(“B”);

A0 = 3;
A1 = 0;
A2 = 2;
A3 = 4;
A4 = 1;
B0 = 2;
B1 = 1;
B2 = 3;
C0 = 0;
B3 = 0;

34/24

RAM Allocation

• TinyOS 1.1 (nesC)

– Fixed array, fixed length, decided on compile

– int unique(string)

– int uCount(string)

– Allocate the minimum amount of memory needed

#define TN uCount(“T”)
Timer_state Timers[TN];

#define TS unique(“T”)
myTimer = Timers[TS];

34

35/24

Isolation

• TinyOS 1.x

– Fixed queue length

– Queue full -> re-invoke after some time
 -> need timer (task)

– Error handling -> need RAM

• Conclusion: shared global memory pool is
bug-prone and a waste of RAM.

Task Queue

35

36/24

Isolation

• TinyOS 2.x: Static Virtualization
– No more shared global memory (isolation)

– The behavior of the API
is solely based on the caller

AMSenderC:

#define QS unique(“Q”)
mySlot = Queue[QS];

AMQueueC:

#define QN uCount(“Q”)
task Queue[QN];
While(1)

for i=0..QN-1
check(Queue[i]);

36

37/24

Language

• nesC

– Generic code

– Compile time memory allocation

– Bug prevention

– Move away from C -> raise the bar to entry

“Making it harder to write buggy code
had the unfortunate result of making it

just harder to write code.”

37

38/24

Components

• Fine-grained components

• Code re-use, privacy, security, etc.

• Intend to make lower level modification easier

• Commercial use

• Steep learning curve

• Drives users away
(industry and academia)

38

39/24

The Island Syndrome

• Arduino

• Contiki

– Pure C

– Traditional OS
structure

Missed being a platform for
simple sensing apps

Missed being a platform
for Internet of Things

39

Hobbyist

Academia

Industry

40/24

Conclusion

• “We should have avoid the island syndrome”

• Easy entry

• Should not focus only on academic use

• Public interactive documentation: wiki

• Late industrial involvement

40

41/24

Discussion

• Is popularity that important?

– Easy entry
vs.
well-defined, well-structured, re-use enabled,
bug-prevented code

• Contradicting purposes

– Industrial vs. academic

– Application level production
vs. lower level investigation

41

42/24

Discussion (From Piazza)

• What effort has TinyOS made on energy
efficiency?

• Will debuggers help?
(e.g., powerful debugger + C)

• “CS graduate students have very little
motivation to actively support
users”: publish or perish

• Future plans? (e.g., splitting the system)

42

