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Motivation: 

• We pay for virtual resources (e.g. computing cycles,storage,virtual 
machine instance), but logically equal resources may have 
different performance due to underlying hardware , contention,etc. 

• ‘Good’  resources may not stay ‘Good’ all the time. 

 

• Goal: 

  Design strategies to dynamically select ‘good’ resources over 
time in order to maximize performance. 
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Subject of Analysis 

• Subject: Amazon EC2 service in US-East Region 

• Resources: EC2 instances 

• Pricing: flat hourly rate to run VMs 

• Strategy type: placement gaming (remove or add instances to the 
current working set) 

• Trade-off: performance gain versus overhead of launching new 
instances 

• Question: Is performance difference large enough to motivate our 
strategies? 
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Experiment on Performance Heterogeneity 
• Three types of heterogeneity: 

  1. Inter-architecture 2. Intra-architecture 3. Temporal 

• BenchMarks used: 

  CPU: slurp and Nqueens 

  Memory:mcf and sphinx3 

  Outbound bandwidth: iperf 

  Storage: Bonnie++ on both Elastic Block Store and local disk which 
uses block reads and block wirtes 

  Metric: normalized speedup relative to worst performing architecture 
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Conclusions 

• The maximum speedup, in percent, of best performance over the 
worst 
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Problem Formation 
• Placement Model 

  1. Quantum: min granularity of replacement intervals 

  (here is 1 hour==min billing unit in Amazon EC2) 

  2. A placement schedule P is a sequence of sets of instances. 

  Let P[t] be the set of instances on time quantum t. 

  3. Metric of Performance: rate of job execution of instance S at quantum t is 
rt(S). (job-specific, assume independence over each instance S) 

  4. For a placement schedule P of duration T, the cost is the sum of set 
cardinality of each set in the sequence. 

  5. time penalty m(overhead of lauching a new instance):  the fraction of the 
first quantum consumed  

  6. support of a placement schedule P: min num of instances preserved in any 
quantum. 
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Problem Formation 
• Placement Strategies 

  For each quantum t: 

  1. which instances to keep: K[t] set of remaining instances 

  2. which fresh instances to launch: set F[t] 

  Input: P[t-1]  output: K[t]+F[t] (assume markov) 

  Various Objectives: 

  1. minimize cost or latency given work load  

  2. bound the cost and maximize work done 

  3. maximize efficiency (work/cost) 

  (min and max are in the sense of expected value or worst case value) 
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Problem Formation 

  Based on restricted strategy space (A,B)-strategies  

  (fixed cost TA+B) 

• Types of Strategies 

1. Up-front exploration and Opportunistic replacement 

2. Gray-box strategies versus Black-box strategies 
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Concrete Design: PERF-M 

  A black box strategy that combines Up-front and Opportunistic 

  Algorithnm: 

  1. launch A+B instance at t=0 

  2. Keep top A, kick out those in Top A whose performance fall 
under threshold          , add the same number of fresh ones 
to reach the minimum requirement of A instances 

  3. for subsequent quantum, kick those fall under threshold and 
adds back the same number of instances. 
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Synthetic Simulations 
• How major changes in cloud affect the strategy 

1. Architechture  performance  variation 

   If this dominates, then Up-front works better 

2. Instance  performance  variation 

   If this dominates, then opportunistic better 

3. Distribution  of  different  architectures 

   if ‘good’ machine doniminates then up-front best 

   if ‘bad’ doniminates,up-front performance grows linearly with parameter B 

   for opportunistic, complex, but seems bell shaped. 
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Synthetic Simulations 
• Simulating the effect of Gaming Contention 

1. First group achieves first-mover advantage 

2. As number of participants grows, first group ‘s performance decreases 

3. First group’s gaming strategy decreases the performance of second 
group 

4. Second group can ‘catch up’ by opportunistic replacement if total 
‘good’ machines outnumber requested ones 

   Questions: 

   Different jobs and perf metrics will have different definition of ‘good’ 

   No overall system performance simulated as m increases 
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Real World Application 

• Strategies used (gray-box and black box) 
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Real World Application 

• Strategies used (gray-box and black box) 
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Experiments on EC2 
• Cost and Performance Model 

 Def of Performance:  

 num of records for NER jobs 

 bytes should have delivered for Apache jobs 

Estimate of Cost: 

Assume 1 min to stop instance 

Assume 2 min to start instance 

Coarsed-grained billing, by hours 

Costs that are not considered: 

Cost of controller 

Storage cost of launching new instance 
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Experiments on EC2 

• Experiments with PERF-M 

 approximately 12 hours with A=10 for NER, 12 hours for Apache 
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My Comments and Opinions 
1. The way it combines up-front and opportunistic in its concrete design 

is not natural to me. use learning? 

2. It seems there is no explaination of the heuristic threshold and no 
detailed test of how this parameter would affect the results 

3. For gray-box, strategies it is essential that one really understands how 
CPU,storage and network bandwidth affects your job-specific 
performance. Otherwise I prefer black box 

4. What if every body do this in Amazon aggresively(trying to beat the 
highest performance? Will the individual optimization lead to collective 
optimal collective 

5. I would use machine learning to deal with the black box parameter 
setting rather than some predetermined heuristic criteria 
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Questions? 

• 1. cloud provider blacklist these ‘aggressive’ players? 

• 2. should cloud provider provide additional service to avoid 
people doing this? 
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PROFILING, WHAT-IF 
ANALYSIS, AND COSTBASED 
OPTIMIZATION 
OF MAPREDUCE PROGRAMS 

Presenter: Ting Xie, tingxie2@illinois.edu 
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Motivation: 

• Before submitting a job to a cloud computing framework,say, 
Hadoop, a number of choices have to be made in order to fully 
specify how the job should execute. 

• Seems to give users the flexibility, but the performance will be 
greatly affected if these parameters are not properly set,  

• Goal: 

. Tune these parameters automatically before running or after a 
short period of profiling of your code. 
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Parameters for Tuning 

1. The number of map tasks and workers 

2. The number of reduce tasks and workers 

3. The amount of memory to allocate to each map (reduce) task to 
buffer its outputs (inputs). 

4. The settings for multi-phase external sorting used by most 
MapReduce frameworks to group map output values by key. 

5. Whether the output data from the map (reduce) tasks should be 
compressed before being written to disk (and if so, then how). 

6. Whether a program-specified Combiner function should be used 
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Difficulties 

1. Black-box map and reduce functions:  

   language like Java and C++ is not as restrictive or declarative 
like SQL, hard to analyze 

2. Lack of schema and statistics about the input data: 

   User only provides a interface or URL of the input data 

3. Differences in plan spaces: 

   The execution plan space of configuration parameter settings 
for MapReduce programs is very different from the plan space for 
SQL queries. 

21 



Important Terms 

Job Profile: 

1. Dataflow fields 

2. Cost fields 

3. Dataflow Statistics fields 

4. Cost Statistics fields 

Cluster Node Homogeneity 

Data Flow Proportionality (unless informed by system) 

 (usually 2 and 4 contains all factors in performance metric) 
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Components 

• Profiler (dynamic instrumentation) 

• What if Engine 

• CBO(cost-based optimizer) 

Given profile, CBO efficiently search 

through the setting pool to find optimal  

(i) subspace enumeration 

(ii) search within each enumerated subspace 

 

Job profile 

Parameter 
setting Pool 

What-If Engine 

CBO 
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Generating Profiles or Virtual Profiles 

• Via Measurement 

  Task-level sampling to generate approximate profiles 

• Via Estimation 

  

 

     

 

 

24 



What-If Engine 

• A complex module created by experts that answers questions like: 

(detailed example formulas given in the appendix) 
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Cost-Based Optimizer (CBO) 
  Question: trust the profile captured by different system or not? 

1. Subspace Enumeration 

  cluster elements in the space first  

2.  Search optimal within subspace 

   1) Gridding (discretization) 

   2) Recursive Random Search (RRS) 

   It first samples randomly to identify promising regions that contain the 
optimal setting with high probability. Then recursively sample a point in 
this region, as a starting point, to find local optimal. 

3.  Global optimal from all cluster optimals 

   

 

 26 



Cost-Based  Vs. Rule-Based Optimizer 

 Rule Based Optimizer is based on rules of thumb used by Hadoop 

 experts to tune MapReduce jobs.  
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Cost-Based  Vs. Rule-Based Optimizer 

 Rule Based Optimizer is based on rules of thumb used by Hadoop 

 experts or past experience to tune MapReduce jobs.  
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Cost-Based  Vs. Rule-Based Optimizer 

 Rule Based Optimizer is based on rules of thumb used by Hadoop 

 experts or past experience to tune MapReduce jobs.  
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Cost-Based  Vs. Rule-Based Optimizer 

 Rule Based Optimizer is based on rules of thumb used by Hadoop 

 experts to tune MapReduce jobs.  
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Efficiency and Effectiveness of CBO 
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Accuray of What if Analysis 
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Approximate Profiles through Sampling 
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Future Work 

 Challenge:  

   Some systems submit several jobs together in the form of job 
workflows  which exhibit data dependencies.  

   In addition, the optimization space now grows to include logical 
decisions such as selecting the best partitioning function, join 
operator, and data layout. 

 Future Direction: 

   Integrate the What-if Engine with tools like data layout and 
dynamic resource allocators for complex MapReduce workflows   
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My Comments and Opinions 

 1. Prediction could be done at the cloud computing provider side 
using learning (assume the system is stable over time,namely the 
history record is reliable till now). Current optimal setting may be 
far from global optimal, there will be some other profile-equivalent 
programs with different setting achieve higher performance. 

 2. The assumption of data flow proportionality and node 
homogeniety is controversial 

 3. level of sampling really matters, there is a trade-off between 
finer level sampling vs. overhead brought by it. 
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Questions? 
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