
More for Your Money:
Exploiting Performance
Heterogeneity in Public
Clouds

Presenter: Ting Xie, tingxie2@illinois.edu

1

Motivation:

• We pay for virtual resources (e.g. computing cycles,storage,virtual
machine instance), but logically equal resources may have
different performance due to underlying hardware , contention,etc.

• ‘Good’ resources may not stay ‘Good’ all the time.

• Goal:

 Design strategies to dynamically select ‘good’ resources over
time in order to maximize performance.

2

Subject of Analysis

• Subject: Amazon EC2 service in US-East Region

• Resources: EC2 instances

• Pricing: flat hourly rate to run VMs

• Strategy type: placement gaming (remove or add instances to the
current working set)

• Trade-off: performance gain versus overhead of launching new
instances

• Question: Is performance difference large enough to motivate our
strategies?

3

Experiment on Performance Heterogeneity
• Three types of heterogeneity:

 1. Inter-architecture 2. Intra-architecture 3. Temporal

• BenchMarks used:

 CPU: slurp and Nqueens

 Memory:mcf and sphinx3

 Outbound bandwidth: iperf

 Storage: Bonnie++ on both Elastic Block Store and local disk which
uses block reads and block wirtes

 Metric: normalized speedup relative to worst performing architecture

4

Conclusions

• The maximum speedup, in percent, of best performance over the
worst

5

Problem Formation
• Placement Model

 1. Quantum: min granularity of replacement intervals

 (here is 1 hour==min billing unit in Amazon EC2)

 2. A placement schedule P is a sequence of sets of instances.

 Let P[t] be the set of instances on time quantum t.

 3. Metric of Performance: rate of job execution of instance S at quantum t is
rt(S). (job-specific, assume independence over each instance S)

 4. For a placement schedule P of duration T, the cost is the sum of set
cardinality of each set in the sequence.

 5. time penalty m(overhead of lauching a new instance): the fraction of the
first quantum consumed

 6. support of a placement schedule P: min num of instances preserved in any
quantum.

6

Problem Formation
• Placement Strategies

 For each quantum t:

 1. which instances to keep: K[t] set of remaining instances

 2. which fresh instances to launch: set F[t]

 Input: P[t-1] output: K[t]+F[t] (assume markov)

 Various Objectives:

 1. minimize cost or latency given work load

 2. bound the cost and maximize work done

 3. maximize efficiency (work/cost)

 (min and max are in the sense of expected value or worst case value)

7

Problem Formation

 Based on restricted strategy space (A,B)-strategies

 (fixed cost TA+B)

• Types of Strategies

1. Up-front exploration and Opportunistic replacement

2. Gray-box strategies versus Black-box strategies

8

Concrete Design: PERF-M

 A black box strategy that combines Up-front and Opportunistic

 Algorithnm:

 1. launch A+B instance at t=0

 2. Keep top A, kick out those in Top A whose performance fall
under threshold , add the same number of fresh ones
to reach the minimum requirement of A instances

 3. for subsequent quantum, kick those fall under threshold and
adds back the same number of instances.

9

Synthetic Simulations
• How major changes in cloud affect the strategy

1. Architechture performance variation

 If this dominates, then Up-front works better

2. Instance performance variation

 If this dominates, then opportunistic better

3. Distribution of different architectures

 if ‘good’ machine doniminates then up-front best

 if ‘bad’ doniminates,up-front performance grows linearly with parameter B

 for opportunistic, complex, but seems bell shaped.

10

Synthetic Simulations
• Simulating the effect of Gaming Contention

1. First group achieves first-mover advantage

2. As number of participants grows, first group ‘s performance decreases

3. First group’s gaming strategy decreases the performance of second
group

4. Second group can ‘catch up’ by opportunistic replacement if total
‘good’ machines outnumber requested ones

 Questions:

 Different jobs and perf metrics will have different definition of ‘good’

 No overall system performance simulated as m increases

 11

Real World Application

• Strategies used (gray-box and black box)

12

Real World Application

• Strategies used (gray-box and black box)

13

Experiments on EC2
• Cost and Performance Model

 Def of Performance:

 num of records for NER jobs

 bytes should have delivered for Apache jobs

Estimate of Cost:

Assume 1 min to stop instance

Assume 2 min to start instance

Coarsed-grained billing, by hours

Costs that are not considered:

Cost of controller

Storage cost of launching new instance

14

Experiments on EC2

• Experiments with PERF-M

 approximately 12 hours with A=10 for NER, 12 hours for Apache

15

My Comments and Opinions
1. The way it combines up-front and opportunistic in its concrete design

is not natural to me. use learning?

2. It seems there is no explaination of the heuristic threshold and no
detailed test of how this parameter would affect the results

3. For gray-box, strategies it is essential that one really understands how
CPU,storage and network bandwidth affects your job-specific
performance. Otherwise I prefer black box

4. What if every body do this in Amazon aggresively(trying to beat the
highest performance? Will the individual optimization lead to collective
optimal collective

5. I would use machine learning to deal with the black box parameter
setting rather than some predetermined heuristic criteria

16

Questions?

• 1. cloud provider blacklist these ‘aggressive’ players?

• 2. should cloud provider provide additional service to avoid
people doing this?

17

PROFILING, WHAT-IF
ANALYSIS, AND COSTBASED
OPTIMIZATION
OF MAPREDUCE PROGRAMS

Presenter: Ting Xie, tingxie2@illinois.edu

18

Motivation:

• Before submitting a job to a cloud computing framework,say,
Hadoop, a number of choices have to be made in order to fully
specify how the job should execute.

• Seems to give users the flexibility, but the performance will be
greatly affected if these parameters are not properly set,

• Goal:

. Tune these parameters automatically before running or after a
short period of profiling of your code.

19

Parameters for Tuning

1. The number of map tasks and workers

2. The number of reduce tasks and workers

3. The amount of memory to allocate to each map (reduce) task to
buffer its outputs (inputs).

4. The settings for multi-phase external sorting used by most
MapReduce frameworks to group map output values by key.

5. Whether the output data from the map (reduce) tasks should be
compressed before being written to disk (and if so, then how).

6. Whether a program-specified Combiner function should be used

20

Difficulties

1. Black-box map and reduce functions:

 language like Java and C++ is not as restrictive or declarative
like SQL, hard to analyze

2. Lack of schema and statistics about the input data:

 User only provides a interface or URL of the input data

3. Differences in plan spaces:

 The execution plan space of configuration parameter settings
for MapReduce programs is very different from the plan space for
SQL queries.

21

Important Terms

Job Profile:

1. Dataflow fields

2. Cost fields

3. Dataflow Statistics fields

4. Cost Statistics fields

Cluster Node Homogeneity

Data Flow Proportionality (unless informed by system)

 (usually 2 and 4 contains all factors in performance metric)

22

Components

• Profiler (dynamic instrumentation)

• What if Engine

• CBO(cost-based optimizer)

Given profile, CBO efficiently search

through the setting pool to find optimal

(i) subspace enumeration

(ii) search within each enumerated subspace

Job profile

Parameter
setting Pool

What-If Engine

CBO

23

Generating Profiles or Virtual Profiles

• Via Measurement

 Task-level sampling to generate approximate profiles

• Via Estimation

24

What-If Engine

• A complex module created by experts that answers questions like:

(detailed example formulas given in the appendix)

25

Cost-Based Optimizer (CBO)
 Question: trust the profile captured by different system or not?

1. Subspace Enumeration

 cluster elements in the space first

2. Search optimal within subspace

 1) Gridding (discretization)

 2) Recursive Random Search (RRS)

 It first samples randomly to identify promising regions that contain the
optimal setting with high probability. Then recursively sample a point in
this region, as a starting point, to find local optimal.

3. Global optimal from all cluster optimals

 26

Cost-Based Vs. Rule-Based Optimizer

 Rule Based Optimizer is based on rules of thumb used by Hadoop

 experts to tune MapReduce jobs.

27

Cost-Based Vs. Rule-Based Optimizer

 Rule Based Optimizer is based on rules of thumb used by Hadoop

 experts or past experience to tune MapReduce jobs.

28

Cost-Based Vs. Rule-Based Optimizer

 Rule Based Optimizer is based on rules of thumb used by Hadoop

 experts or past experience to tune MapReduce jobs.

29

Cost-Based Vs. Rule-Based Optimizer

 Rule Based Optimizer is based on rules of thumb used by Hadoop

 experts to tune MapReduce jobs.

30

Efficiency and Effectiveness of CBO

31

Accuray of What if Analysis

32

Approximate Profiles through Sampling

33

Future Work

 Challenge:

 Some systems submit several jobs together in the form of job
workflows which exhibit data dependencies.

 In addition, the optimization space now grows to include logical
decisions such as selecting the best partitioning function, join
operator, and data layout.

 Future Direction:

 Integrate the What-if Engine with tools like data layout and
dynamic resource allocators for complex MapReduce workflows

34

My Comments and Opinions

 1. Prediction could be done at the cloud computing provider side
using learning (assume the system is stable over time,namely the
history record is reliable till now). Current optimal setting may be
far from global optimal, there will be some other profile-equivalent
programs with different setting achieve higher performance.

 2. The assumption of data flow proportionality and node
homogeniety is controversial

 3. level of sampling really matters, there is a trade-off between
finer level sampling vs. overhead brought by it.

35

Questions?

36

