
Storage Management and Caching
in PAST, a Large-scale, Persistent
Peer-to-peer Storage Utility

Presented by Haiming Jin

2013-03-07

Background

• P2P applications emerges as mainstream applications

– 53.3% of upstream internet traffic (2010)

– Scalability, robustness to failures, information availability, etc.

– P2P file sharing, VoP2P, P2PTV, etc.

Overlay Structures

3

• Unstructured overlays

– Napster, Gnutella, FastTrack, Freenet, etc.

– Random graph, power-law graph, etc.

– Random walk, flooding, etc.

• Structured overlays

– Chord, Pastry, Tapestry, P-Grid, etc.

– Ring overlay, etc.

– Distributed Hash Table (DHT)

PAST Overview

• Internet-based, peer-to-peer global storage
utility (archival storage system)

– Persistence, availability, scalability, security and load
balancing

– Semantically different from a conventional file
system

• Insert, Lookup and Reclaim

• No searching, directory lookup or key distribution

• Immutable (read-only) files

– Built on top of Pastry
• Logarithmic complexity for routing message exchange

• Locality

– Whole file replication (block-based file-replication?)

4

TCP/IP

Pastry

PAST

Pastry-Routing

5

State of Pastry Node with NodeId
10233102, b=2 and l=8

• Leaf set
– l numerically closest nodes

10233102

10233120

10233122

10233130

10233132

10233033

10233021

10233001

10233000

• Neighborhood set
– l closest nodes with respect to

proximity metric

– Scalar metric, e.g. number of IP hops,
geographical distance, etc.

Level 2 • Routing table

– log2𝑏 𝑁 × 2𝑏 − 1 entries

– Prefix matching and proximity metric
based

Pastry-Routing

6

• Routing algorithm • Example

65a1fc

d13da3

d4213f

d462ba

d467c4

Route(d46a1c)

7

PAST-Operations

• File insertion

– fileId=Insert(name, owner-credentials, k, file)

– Route file and certificate via Pastry with destination fileId
• Certificate=fileId+SHA-1(file content)+k+salt+date+metadata

– Ack with store receipts routed back when all k nodes receive
the file

160 bit
FileId

File Name

Random
Salt

Public
Key

SHA-1

8

PAST-Operations

• File lookup

– file=Lookup(fileId)

– Route request message using fileId as destination

– Likely to retrieve content within proximity of the client

• File reclamation

– Reclaim(fileId, owner-credentials)

– No longer guarantee successful lookup for file with fileId

– Similar to file insertion
• Reclaim certificate and reclaim receipt routing

9

PAST-Storage Management

10

• Responsibilities of storage management

– Load balancing among PAST nodes
• Statistical variation in NodeId assignment, file size distribution,

heterogeneous node storage capacity

– Maintain that copies of each file are maintained by k nodes
with nodeIds closest to the fileId

• Ways of storage management

– Replica diversion
• Load balancing within leaf set

– File diversion
• Load balancing among different storage portions

11

PAST-Storage Management

C B

A A node lacking enough

storage to store the file

A node within A’s leaf

set that is not among

the k closest to hold the

diverted replica

(K+1) th numerically

closest node to the

fileId in case of failure

of A

• Replica diversion
– Load balancing within leaf set

– Replica diversion policy

• A node N rejects file D if
𝑆𝐷

𝐹𝑁
> 𝑡 𝑡𝑝𝑟𝑖 > 𝑡𝑑𝑖𝑣

• File diversion
– Load balancing among different portions of PAST storage

– On failure of file insertion, a different salt is chosen to divert the file to
another storage space

PAST-Caching

12

• Cache insertion policy

– Cache copies are inserted to a node along the routing of
lookup or insert

– 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒 < 𝑐 × 𝑁𝑜𝑑𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑎𝑐ℎ𝑒 𝑆𝑖𝑧𝑒

• Cache replacement policy

– GreedyDual-Size Policy

– Maintain weight for each file, 𝐻𝑑 =
𝑐 𝑑

𝑠 𝑑

• Pick the file with minimum weight, 𝐻𝑣 to be evicted

• Subtract , 𝐻𝑣from the 𝐻 values of all cached files

• Cache hit rate is maximized if 𝑐 𝑑 is set to 1

13

Experimental Results

14

Median Mean Max Min Number of files

NLANR 1,312B 10,517B 138MB 0 10,517

File system 4,578B 88.233B 2.7GB 0 2,027,908

• 2250 nodes

• Necessity of storage
management
– Fail ratio=51.1%, Storage

utilization=60.8%
without storage
management

Experimental Results

𝑡𝑝𝑟𝑖

𝑡𝑑𝑖𝑣 = 0.05

𝑡𝑑𝑖𝑣

𝑡𝑝𝑟𝑖 = 0.1

• Impact of 𝑡𝑝𝑟𝑖 and 𝑡𝑑𝑖𝑣

– Cumulative failure ratio of file insertion v.s. Storage utilization
ratio

• Reminder: if
𝑆𝐷

𝐹𝑁
> 𝑡, the file insertion is rejected.

15

Experimental Results

• Rejected file sizes v.s. utilization

16

MLANR trace File system trace

Experimental Results

• Impact of caching
– GD-S v.s. LRU v.s. No caching

17

Discussions

• Any methods to optimally decide replication factor k?

• Whole file storage (PAST) v.s. file fragmentation (CFS)?

– Trade-off?

• Semantics:

– Read-only operations

– Directory lookup, delete, key distribution, etc.

• Concurrent joining of nodes?

• Discussions from piazza:

– Pitfalls of invariant based system?

– Stability when there are frequent node removals and additions?

– Applicability in real scenarios?

18

CoDNS: Masking DNS Delays via
Cooperative Lookups

Presented by Zhenhuan Gao
03/07/2013

• Domain Name System
– Effectiveness, human-

friendliness, scalability

– Convert domain to IP

– Multiple levels

– Local nameserver

Introduction

20

• Wide-area distributed testbed (PlanetLab)
– Diagnosing “failures”

– Providing a cooperative lookup scheme to mask
the failure-induced local delays

• CoDeeN content distribution network (CDN)
– Consists of a network of Web proxy servers that

include custom code to control request forwarding
between nodes.

– When forward requests to the origin server, it
performs a DNS lookup to convert the server’s name
into an IP address in a timely manner.

– Desire to have a standard for comparison across all
CoDeeN nodes.

Background and Analysis

21

• Name Lookups of CoDeeN Nodes (10% CodeeN)

Background and Analysis

22

• Name Lookups of CoDeeN Nodes
– The number of requests which fail is small

– However, figure (b) indicates a small percentage of
failure cases dominates the totall time!

Background and Analysis

23

• The poor responsiveness stems from the node
performing the measurement? No, because,

Background and Analysis

24

• Failure Characterization
– Periodic failures

• Cron jobs running on the local nameserver.

– Long lasting continuous failures
• Local nameserver malfunctioning or extended overloading.

– Sporadic short failures:
• Temporary overloading of the local name server.

Background and Analysis

25

• Failure Characterization
– How long the failures typically last?

Background and Analysis

26

• Correlation of the DNS lookup failures

Background and Analysis

27

Hourly min/avg/max percentage of nodes with good NS

– “Healthy” servers
• Failure rate < 1%

• Less than 1.25x global
failure rate

• Avoiding failure for some
DNS sites

– Healthy server > 90%

As long as there is a reasonable number of healthy nameservers, they can
be used to mask locally-observed delays

• CoDNS
– Forward name lookup queries to peer nodes when

the local name service is experiencing a problem

– When to send remote queries?
• Most name lookups are fast in the local nameserver.

• Spreading the requests to peers might generate additional
traffic.

– Proximity and Locality
• Trivial

Design

28

When to using remote servers and how many to involve?

• CoDNS
– Experiment

• Relationship between CoDNS response time and peers
involved

• Extra DNS overhead

Design

29

• Other Approaches
– The recursive DNS query ability into local node

• Reduces the caching effectiveness

• Increases the configuration efforts and also causes extra
management problems

• More resources on each node

– making the resolver library on the local node act
more aggressively

• Many failures observed are caused by overload rather than
network packet loss

• Second nameserver will be overloaded as a result

• The problems are local, not global

Design

30

• Remote query initiation
– The initial delay would be dynamically adjusted

• Proximity, Locality and Availability
– Each CoDNS node gathers a set of eligible neighbors

– Liveness is periodically checked

– Heartbeat to neighbors every 30s

– Periodically update dead nodes with fresh ones

Implementation

31

• Local DNS vs. CoDNS

Results

32

 network problem fail at first phase Non-existent name

• Local DNS vs. CoDNS
– Average response time

– Standard deviation

Results

33

• Analysis
– 18.9% of all the lookups using remote peers

– 34.6% of the remote queries “win”

– The effect of multiple querying

Results

34

• Locality and proximity?

• privacy Issue

• Trust build with peer nodes

• Failure in master nameserver

Discussion

35

Reliable Client Accounting for P2P-
Infrastructure Hybrids

Presented by Haiming Jin

2013-03-07

Background

• Hybrid CDN-P2P architecture

– P2P: Scalability, infrastructure independent, etc.

– Infrastructure: Predictable QoS, etc.

– Commercial hybrid systems: Net Session, Livesky, etc.

• Accounting reliability?

37

Threat Models and Countermeasures

Threat models Countermeasures

Fail to log exact set of messages
sent or acknowledged

Message commitment

Fail to log consistent sequence of
messages

Log consistency checking

Execute illegal, or fail to execute
required protocol action

Log plausibility checking

Faulty peers collude to report
fictitious exchanges

Client paring control and
anomalous client quarantine

Render poor service to peers Anomalous client quarantine

Nefarious user requests Suspicious user behavior
throttling/flagging

Sybil attack Resource limits enforcement

38

Application to NetSession-RCA System

1 2
3

4

• RCA workflow
– 1. The client uploads a short file to demonstrate its link capacity

– 2. Private key 𝜎𝑖, public key 𝜋 𝑖 and certificate Γ𝑖

– 3. Periodically uploading of temper-evident log

– 4. Forwarding of temper-evident log to backend servers

39

Performance Evaluation

40

Discussions

• Infrastructure resource consumption in quarantining clients?

• Applicability to other P2P hybrid systems?

• Plausibility of adversary model?

• Scalability of the scheme?

• Overhead in storage space, network traffic, etc.?

