
Furquan	
  Shaikh	
  
Paxos Replicated State Machines as the 
Basis of a High-Performance Data Store	
  

February	
  12,	
  2013	
  

CS 525  
Advanced Distributed 

Systems 
Spring 2013 

Slides	
  Reference:	
  
h/p://sta4c.usenix.org/events/nsdi11/tech/slides/bolosky.pdf	
  
Implemen4ng_FaultTolerant_Services_Using_the_State_Machine_Approach_A_Tutorial	
  
	
   1	
  



BACKGROUND	
  AND	
  MOTIVATION	
  

2	
  



State	
  Machine	
  

3	
  



Faults	
  

•  Fault:	
  System	
  behavior	
  inconsistent	
  with	
  the	
  
specificaLon	
  

•  Failure	
  models:	
  
– ByzanLne	
  Failures	
  
– Fail-­‐stop	
  Failures	
  

•  t-­‐fault	
  tolerant:	
  system	
  that	
  saLsfies	
  
specificaLon	
  provided	
  no	
  more	
  than	
  t	
  of	
  its	
  
components	
  become	
  faulty	
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Replicated	
  State	
  Machines	
  

•  A	
  fault	
  tolerant	
  state	
  machine	
  can	
  be	
  
implemented	
  by	
  replicaLng	
  that	
  state	
  machine	
  
on	
  each	
  of	
  the	
  processors	
  in	
  a	
  distributed	
  system.	
  

•  Requirements	
  of	
  Replica	
  
–  Same	
  iniLal	
  state	
  
–  Execute	
  the	
  same	
  request	
  in	
  the	
  exact	
  same	
  order	
  
–  Perform	
  the	
  same	
  thing	
  and	
  produce	
  the	
  same	
  output	
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Client-­‐server	
  model	
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Fault	
  tolerance	
  using	
  Replicated	
  State	
  
Machines	
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REPLICATED	
  STATE	
  MACHINES	
  FOR	
  
MAKING	
  DATA	
  STORES	
  FAULT	
  

TOLERANT	
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ConvenLonal	
  Systems	
  
•  Primary-­‐backup	
  Replica=on	
  	
  

–  Run	
  at	
  slower	
  rate	
  of	
  primary,	
  may	
  rely	
  on	
  some	
  kind	
  
of	
  clock	
  synchronizaLon	
  

•  Google	
  File	
  System	
  
– Append	
  mostly	
  files,	
  weaker	
  consistency,	
  sacrifices	
  
efficiency	
  for	
  overwrites	
  

•  Google’s	
  Chubby	
  Lock	
  Service	
  
–  Relies	
  on	
  clock	
  synchronizaLon	
  

•  Storage	
  Area	
  Networks	
  (SANs)	
  
–  Costlier,	
  use	
  special	
  hardware	
  (eg.	
  Ba^ery-­‐backed	
  
RAM)	
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Breaking	
  the	
  Trend	
  

•  Is	
  it	
  possible	
  to	
  build	
  a	
  fault-­‐tolerant	
  high-­‐
performance	
  data	
  store	
  from	
  commodity	
  
parts?	
  Without	
  compromising	
  on	
  semanLcs	
  or	
  
relying	
  on	
  special	
  hardware	
  or	
  clock	
  
synchronizaLon?	
  

•  The	
  answer	
  is	
  PAXOS	
  Replicated	
  State	
  
Machine	
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Paxos	
  Replicated	
  State	
  Machines	
  

•  Features:	
  
– SequenLally	
  consistent	
  
– Persistent	
  
– Fault	
  tolerant	
  
– Don’t	
  rely	
  on	
  clock	
  sync	
  for	
  correctness	
  
– Considered	
  slow	
  (???)	
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Applicable	
  Scenarios	
  

•  For	
  data	
  center	
  systems:	
  
– Consistency	
  and	
  availability	
  is	
  preferred	
  over	
  
parLLon	
  tolerance	
  (CAP	
  theorem)	
  

– OperaLon	
  latencies	
  ≥	
  Network	
  Latencies	
  
•  Paxos	
  Replicated	
  State	
  Machines:	
  

– Almost	
  (or	
  be^er	
  than)	
  base	
  performance	
  
– No	
  need	
  for	
  compromise	
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GAIOS	
  and	
  SMARTER	
  
William	
  Bolosky	
  et	
  al	
  (Microsoh	
  

Research)	
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How	
  is	
  PAXOS	
  used?	
  

•  Paxos	
  is	
  a	
  protocol	
  for	
  guaranteeing	
  input	
  
ordering	
  even	
  with:	
  
– MulLple	
  clients	
  
– Unreliable	
  networks	
  
– No	
  synchronized	
  clocks	
  
– Unlimited	
  machine	
  reboots	
  
– Some	
  permanent	
  stopping	
  faults	
  (i.e.	
  disk	
  losses)	
  
– But	
  not	
  ByzanLne	
  faults	
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Basic	
  OperaLon	
  

Client	
  

Leader	
  

Member	
  

Member	
  

Client	
  Request	
  Proposal	
  Logging	
  Log	
  Complete	
  Log	
  Complete	
  +	
  ACK	
  Commit	
  Reply	
  Extra	
  Reply	
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4K	
  Write	
  Latency	
  Timeline	
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Gaios	
  Architecture	
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How	
  is	
  efficiency	
  achieved?	
  

•  Pipelining	
  
•  Batching	
  client	
  requests	
  
•  Batched	
  write	
  behind	
  
•  Overlap	
  fetch	
  with	
  logging	
  

•  Novel	
  read-­‐only	
  operaLon	
  protocol	
  that	
  
allows	
  consistent	
  reads	
  from	
  any	
  node	
  

18	
  



Read	
  Consistency	
  Property	
  

•  When	
  a	
  read-­‐only	
  request	
  R	
  completes,	
  it	
  
reflects	
  any	
  data	
  known	
  by	
  any	
  client	
  to	
  be	
  
wri^en	
  at	
  the	
  Lme	
  R	
  was	
  sent.	
  	
  

•  Only	
  need	
  to	
  run	
  in	
  one	
  place	
  
•  Using	
  all	
  disks	
  can	
  enhance	
  performance	
  
(load-­‐balancing)	
  

•  Dynamically	
  selecLng	
  locaLon	
  helps	
  	
  
– Avoid	
  nodes	
  that	
  are	
  wriLng	
  (avoid	
  read	
  write	
  
contenLon)	
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Read	
  Write	
  ContenLon	
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Read-­‐only	
  OperaLon	
  

Read	
  Request	
  Leadership	
  Check	
  Leadership	
  Reply	
  Read	
  Complete	
  Client	
  Reply	
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4K	
  Read	
  Latency	
  Time	
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Performance	
  EvaluaLon	
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8K	
  Random	
  Read	
  Throughput	
  
(Lots	
  of	
  outstanding	
  requests)	
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Random	
  IO	
  performance	
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SequenLal	
  IO	
  performance	
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OLTP	
  Performance	
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Summary	
  

•  Paxos	
  RSMs	
  work	
  perfectly	
  fine	
  for	
  high-­‐
performance	
  disk-­‐based	
  applicaLons	
  

•  No	
  need	
  to	
  compromise	
  on	
  semanLcs,	
  or	
  buy	
  
special	
  hardware,	
  depend	
  on	
  clocks,	
  etc.	
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Points	
  to	
  ponder	
  

•  What	
  happens	
  in	
  case	
  of	
  parLLon?	
  
•  Is	
  this	
  suitable	
  for	
  WANs?	
  
•  	
  What	
  is	
  the	
  performance	
  in	
  view	
  of	
  faults?	
  
•  Can	
  this	
  system	
  be	
  run	
  completely	
  out	
  of	
  
memory?	
  (i.e.	
  moving	
  logs	
  out	
  of	
  disk)	
  

•  What	
  will	
  happen	
  with	
  new	
  advancement	
  in	
  
disk	
  technology?	
  SSD,	
  flash?	
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Spinnaker	
  

•  Experimental	
  datastore	
  
•  Runs	
  on	
  large	
  cluster	
  of	
  commodity	
  servers	
  in	
  
data	
  center	
  

•  Key-­‐based	
  range	
  parLLonining	
  
•  3-­‐way	
  replicaLon	
  
•  OpLonal	
  strong	
  /Lmeline	
  consistency	
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Spinnaker	
  cluster	
  

31	
  



API	
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Conclusion	
  

•  Paxos	
  based	
  replicaLon	
  systems	
  for	
  
guaranteeing	
  CA	
  

•  Suitable	
  for	
  data	
  center	
  like	
  systems	
  
•  TradiLonal	
  thought	
  that	
  Paxos	
  slows	
  down	
  
system	
  not	
  true	
  under	
  the	
  light	
  of	
  higher	
  
latency	
  operaLons	
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The Chubby lock service for 
loosely-coupled distributed systems�

Mike Burrows�
�

Presented by Fangzhou Yao �
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Introduction �
"   Chubby�

"   Lock service in a loosely-coupled 
distributed system e.g. 10k 4-processor 
machines connected by 1Gbit/s Ethernet �

"   Client interface similar to a simple file 
system that performs whole-file reads and 
writes�

"   Objectives: availability and reliability�

"   Used for: GFS, Bigtable�

"   Meta-data filesystem, name service, etc.�
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Design �

Client 
Application �

Chubby 
Library �

Client 
Application �

Chubby 
Library �

...�
client processes�

5 servers (replicas)�
of a Chubby cell�

Master�

RPC�

“How the cells are connected and consistent?”�
Is RPC obsolete? Suggestions for a replacement?�
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System Structure�
"   A Chubby cell consists of a small set of 

servers (usually five) known as replicas�

"   Replicas use a distributed consensus protocol 
(Paxos) to elect a master�

"   Master lease: time interval that replicas 
will not elect a new master (majority in 
votes), usually a few seconds�

"   Upon failure, a new election will be 
initiated after the lease�
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System Structure�
"   Replicas maintain copies of a simple database�

"   Only the master reads and writes to it �

"   Others update from the master�

"   Clients send read and write requests only to 
the master�

"   Finding the master by sending master 
location requests to replicas listed in DNS�

"   Clients talk to the master though the 
Chubby library�
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System Structure�
"   Write requests�

"   The master sends it to all replicas via the 
consensus protocol (Paxos, again) �

"   Replies after the write reaches a majority 
of replicas�

"   Read requests�

"   The master satisfies the read alone�

"   This is safe because of the master lease - 
no other masters at the same time�
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System Structure�
"   If a replica fails and does not recover for 

some time, like a few hours�

"   A fresh machine from the free pool is 
selected to be a new replica as a 
replacement �

"   Updates the DNS tables, replacing IP�

"   Obtains a recent copy of the database�

"   The current master checks DNS 
periodically for new replicas�
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Files, Directories, and 
Handles�

"   UNIX-like filesystem interface �

"   /ls/foo/wombat/pouch�

"   ls: prefix for Chubby lock service�

"   foo: the Chubby cell, resolved via DNS 
lookup �

"   /wombat/pouch, resolved inside of the cell�

"   Supports for use as master changes�
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Files, Directories, and 
Handles�

"   Supports a strict tree of files and directories�

"   Supports traditional file operations e.g. create, 
delete, open, write... but no path-dependent 
operations, like move�

"   Supports advisory reader and writer lock on a node - 
it only prevents others from getting an advisory lock 
on the same file, but does not actually prevent the 
read or write.�

"   Meta-data on nodes (files and dirs) includes: Access 
Control List for Read, Write and Change of ACL; 4 
increasing 64-bit numbers (instance, content 
generation, lock gen, ACL gen); 64-bit file-content 
check sum�
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Locks and Sequencers�
"   Locks (each file and directory will behave)�

"   Advisory and not mandatory�

"   Mandatory locks makes object inaccessible�

"   Sequencers (A byte-string describing the 
state of the lock after acquisition)�

"   Name, mode (exclusion or shared), number�

"   Server validates this and handle requests�
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Events�
"   Clients can subscribe to many events�

"   File contents modified - monitor the location of a 
service advertised via the file�

"   Child node added, removed, modified - mirroring �

"   Master failed over - warning for clients�

"   Handle becomes invalid - usually communication 
problem�

"   Lock acquired  - if a primary has been elected 
(rarely used)�

"   Conflicting locks - allows the caching of locks 
(rarely used)�
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APIs�
"   Open() creates handles, takes a node name�

"   Close() destroys handles; Poison() causes fail directly�

"   GetContentsAndStat() returns content and meta-data; 
GetStat() for meta-data; ReadDir() for children �

"   SetContents() sets all contents to a file; SetACL()�

"   Delete() deletes the node if it has no children �

"   Acquire(), TryAcquire(), Release() for locks�

"   GetSequencer(), SetSequencer(), CheckSequencer() for 
sequencers�
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Caching�
"   Objective: To reduce the read traffic�

"   File data and meta data are cached on clients�

"   Consistent, write-through�

"   Master will invalidate cached copies when a write 
request is initiated�

"   List of what clients may have cached�

"   Sends invalidations on top of KeepAlive to clients�

"   Clients flush the changed data�

"   Servers starts the modification �
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Sessions, KeepAlives�

"   Session maintained through KeepAlives (Periodic 
handshakes)�

"   A client sends KeepAlive requests to a master�

"   A master responds by a KeepAlive response�

"   Clients maintain a local timer to estimate the session 
timeouts, which are not perfectly synchronized�

"   If local timer expires (session in jeopardy), wait for a 
grace period (45s) before ending the session �
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Fail-overs�

Old Master� New Master�

Client �

No Master�

lease M1 �

lease C1 �

lease M2�

lease C2� grace�
lease C3�

lease M3�

jeopardy�

new master 
elected�

safe�

KeepAlive Request �Master commits to �
lease M2 and reply�KeepAlive Request �KeepAlive Request �Reject: Wrong �

epoch Number�
Retried Request �Allows to �

extend C3�
KeepAlive �
Request �
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Other Specs�
"   Database Implementation �

"   Berkeley DB - logging and snapshotting �

"   Backup �

"   The master writes a snapshot of its 
database to a GFS server�

"   Mirroring �

"   A collection of files can be mirrored from 
one cell to another, e.g. configuration files�
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Mechanisms for Scaling �
"   90,000 clients communicate with a single cell�

"   Server machine is the same with clients, 
so the master may be overwhelmed�

"   Regulate the number of Chubby cells�

"   Reduce communication �

"   Increase lease time�

"   Client caching �

"   Protocol-conversion servers�
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Mechanisms for Scaling: 
Proxies�

"   Passes requests from clients to the cell�

"   Reduces server load by handling both 
KeepAlive and read requests, but not for 
write traffic, which passes through the 
proxy’s cache�

"   Writes are just a small portion �

"   Needs additional RPC to writes and first-
time read�
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Mechanisms for Scaling: 
Partitioning �

"   Partitioning of namespace between servers�

"   N partitions, each has a set of replicas and a 
master�

"   Node D/C in D is in P(D/C) == hash(D) mod N �

"   Meta-data for D may be different �

"   Intends to enable large Chubby cells with 
little communication between partitions�
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Use and Behaviors�

"   What can we see from this table?�



54�

Use and Behaviors�
"   Many files are used for naming �

"   Configuration, access control and meta-data 
files are common �

"   Negative caching is significant �

"   Around 10 clients use each cache file�

"   Few clients hold locks and shared locks are 
rare�

"   RPC traffic is dominated by session 
KeepAlives�
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Outages�

"   Recorded 61 outages over a few weeks�

"   700 cell-days of data in total�

"   Most 15s or less, and 52 of them were 
under 30s�

"   Main causes: network congestion, 
maintenance, overload, and errors due to 
operators, software, and hardware.�
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Summary"�

"   What did we get from Chubby?�

"   Lock service with Paxos protocol�

"   Design for Loosely-coupled distributed 
system�

"   UNIX-like filesystem interface�

"   Reliability and availability�



Discussion �
"   “Fine-grained locking could be ignored” v. “design of a 

two tier locking system supporting both coarse and 
fine lockings”�

"   “Chubby is a single system that provides multiple 
services. This could mean that if one of the service 
requirements is changed, the whole system needs to 
be updated or even re-written.”�

"   What can we do about KeepAlives?�

"   Other Questions?�

"   Thanks for your attention! �

Reference: http://www.cs.cmu.edu/~chensm/Big_Data_reading_group/slides/shimin-chubby.ppt �


