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Faults	  

•  Fault:	  System	  behavior	  inconsistent	  with	  the	  
specificaLon	  

•  Failure	  models:	  
– ByzanLne	  Failures	  
– Fail-‐stop	  Failures	  

•  t-‐fault	  tolerant:	  system	  that	  saLsfies	  
specificaLon	  provided	  no	  more	  than	  t	  of	  its	  
components	  become	  faulty	  
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Replicated	  State	  Machines	  

•  A	  fault	  tolerant	  state	  machine	  can	  be	  
implemented	  by	  replicaLng	  that	  state	  machine	  
on	  each	  of	  the	  processors	  in	  a	  distributed	  system.	  

•  Requirements	  of	  Replica	  
–  Same	  iniLal	  state	  
–  Execute	  the	  same	  request	  in	  the	  exact	  same	  order	  
–  Perform	  the	  same	  thing	  and	  produce	  the	  same	  output	  

5	  



Client-‐server	  model	  
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Fault	  tolerance	  using	  Replicated	  State	  
Machines	  
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REPLICATED	  STATE	  MACHINES	  FOR	  
MAKING	  DATA	  STORES	  FAULT	  

TOLERANT	  
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ConvenLonal	  Systems	  
•  Primary-‐backup	  Replica=on	  	  

–  Run	  at	  slower	  rate	  of	  primary,	  may	  rely	  on	  some	  kind	  
of	  clock	  synchronizaLon	  

•  Google	  File	  System	  
– Append	  mostly	  files,	  weaker	  consistency,	  sacrifices	  
efficiency	  for	  overwrites	  

•  Google’s	  Chubby	  Lock	  Service	  
–  Relies	  on	  clock	  synchronizaLon	  

•  Storage	  Area	  Networks	  (SANs)	  
–  Costlier,	  use	  special	  hardware	  (eg.	  Ba^ery-‐backed	  
RAM)	  
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Breaking	  the	  Trend	  

•  Is	  it	  possible	  to	  build	  a	  fault-‐tolerant	  high-‐
performance	  data	  store	  from	  commodity	  
parts?	  Without	  compromising	  on	  semanLcs	  or	  
relying	  on	  special	  hardware	  or	  clock	  
synchronizaLon?	  

•  The	  answer	  is	  PAXOS	  Replicated	  State	  
Machine	  
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Paxos	  Replicated	  State	  Machines	  

•  Features:	  
– SequenLally	  consistent	  
– Persistent	  
– Fault	  tolerant	  
– Don’t	  rely	  on	  clock	  sync	  for	  correctness	  
– Considered	  slow	  (???)	  

	  
	  

11	  



Applicable	  Scenarios	  

•  For	  data	  center	  systems:	  
– Consistency	  and	  availability	  is	  preferred	  over	  
parLLon	  tolerance	  (CAP	  theorem)	  

– OperaLon	  latencies	  ≥	  Network	  Latencies	  
•  Paxos	  Replicated	  State	  Machines:	  

– Almost	  (or	  be^er	  than)	  base	  performance	  
– No	  need	  for	  compromise	  
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GAIOS	  and	  SMARTER	  
William	  Bolosky	  et	  al	  (Microsoh	  

Research)	  
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How	  is	  PAXOS	  used?	  

•  Paxos	  is	  a	  protocol	  for	  guaranteeing	  input	  
ordering	  even	  with:	  
– MulLple	  clients	  
– Unreliable	  networks	  
– No	  synchronized	  clocks	  
– Unlimited	  machine	  reboots	  
– Some	  permanent	  stopping	  faults	  (i.e.	  disk	  losses)	  
– But	  not	  ByzanLne	  faults	  
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Basic	  OperaLon	  

Client	  

Leader	  

Member	  

Member	  

Client	  Request	  Proposal	  Logging	  Log	  Complete	  Log	  Complete	  +	  ACK	  Commit	  Reply	  Extra	  Reply	  
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4K	  Write	  Latency	  Timeline	  
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Gaios	  Architecture	  
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How	  is	  efficiency	  achieved?	  

•  Pipelining	  
•  Batching	  client	  requests	  
•  Batched	  write	  behind	  
•  Overlap	  fetch	  with	  logging	  

•  Novel	  read-‐only	  operaLon	  protocol	  that	  
allows	  consistent	  reads	  from	  any	  node	  
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Read	  Consistency	  Property	  

•  When	  a	  read-‐only	  request	  R	  completes,	  it	  
reflects	  any	  data	  known	  by	  any	  client	  to	  be	  
wri^en	  at	  the	  Lme	  R	  was	  sent.	  	  

•  Only	  need	  to	  run	  in	  one	  place	  
•  Using	  all	  disks	  can	  enhance	  performance	  
(load-‐balancing)	  

•  Dynamically	  selecLng	  locaLon	  helps	  	  
– Avoid	  nodes	  that	  are	  wriLng	  (avoid	  read	  write	  
contenLon)	  
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Read	  Write	  ContenLon	  
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Read-‐only	  OperaLon	  

Read	  Request	  Leadership	  Check	  Leadership	  Reply	  Read	  Complete	  Client	  Reply	  
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4K	  Read	  Latency	  Time	  
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Performance	  EvaluaLon	  
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8K	  Random	  Read	  Throughput	  
(Lots	  of	  outstanding	  requests)	  
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Random	  IO	  performance	  
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SequenLal	  IO	  performance	  
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OLTP	  Performance	  
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Summary	  

•  Paxos	  RSMs	  work	  perfectly	  fine	  for	  high-‐
performance	  disk-‐based	  applicaLons	  

•  No	  need	  to	  compromise	  on	  semanLcs,	  or	  buy	  
special	  hardware,	  depend	  on	  clocks,	  etc.	  
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Points	  to	  ponder	  

•  What	  happens	  in	  case	  of	  parLLon?	  
•  Is	  this	  suitable	  for	  WANs?	  
•  	  What	  is	  the	  performance	  in	  view	  of	  faults?	  
•  Can	  this	  system	  be	  run	  completely	  out	  of	  
memory?	  (i.e.	  moving	  logs	  out	  of	  disk)	  

•  What	  will	  happen	  with	  new	  advancement	  in	  
disk	  technology?	  SSD,	  flash?	  
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Spinnaker	  

•  Experimental	  datastore	  
•  Runs	  on	  large	  cluster	  of	  commodity	  servers	  in	  
data	  center	  

•  Key-‐based	  range	  parLLonining	  
•  3-‐way	  replicaLon	  
•  OpLonal	  strong	  /Lmeline	  consistency	  
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Spinnaker	  cluster	  
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API	  

32	  



Conclusion	  

•  Paxos	  based	  replicaLon	  systems	  for	  
guaranteeing	  CA	  

•  Suitable	  for	  data	  center	  like	  systems	  
•  TradiLonal	  thought	  that	  Paxos	  slows	  down	  
system	  not	  true	  under	  the	  light	  of	  higher	  
latency	  operaLons	  

33	  



The Chubby lock service for 
loosely-coupled distributed systems�

Mike Burrows�
�

Presented by Fangzhou Yao �
CS 525 Feb 12th, 2013�



35�

Introduction �
"   Chubby�

"   Lock service in a loosely-coupled 
distributed system e.g. 10k 4-processor 
machines connected by 1Gbit/s Ethernet �

"   Client interface similar to a simple file 
system that performs whole-file reads and 
writes�

"   Objectives: availability and reliability�

"   Used for: GFS, Bigtable�

"   Meta-data filesystem, name service, etc.�
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Design �

Client 
Application �

Chubby 
Library �

Client 
Application �

Chubby 
Library �

...�
client processes�

5 servers (replicas)�
of a Chubby cell�

Master�

RPC�

“How the cells are connected and consistent?”�
Is RPC obsolete? Suggestions for a replacement?�
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System Structure�
"   A Chubby cell consists of a small set of 

servers (usually five) known as replicas�

"   Replicas use a distributed consensus protocol 
(Paxos) to elect a master�

"   Master lease: time interval that replicas 
will not elect a new master (majority in 
votes), usually a few seconds�

"   Upon failure, a new election will be 
initiated after the lease�
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System Structure�
"   Replicas maintain copies of a simple database�

"   Only the master reads and writes to it �

"   Others update from the master�

"   Clients send read and write requests only to 
the master�

"   Finding the master by sending master 
location requests to replicas listed in DNS�

"   Clients talk to the master though the 
Chubby library�
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System Structure�
"   Write requests�

"   The master sends it to all replicas via the 
consensus protocol (Paxos, again) �

"   Replies after the write reaches a majority 
of replicas�

"   Read requests�

"   The master satisfies the read alone�

"   This is safe because of the master lease - 
no other masters at the same time�
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System Structure�
"   If a replica fails and does not recover for 

some time, like a few hours�

"   A fresh machine from the free pool is 
selected to be a new replica as a 
replacement �

"   Updates the DNS tables, replacing IP�

"   Obtains a recent copy of the database�

"   The current master checks DNS 
periodically for new replicas�
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Files, Directories, and 
Handles�

"   UNIX-like filesystem interface �

"   /ls/foo/wombat/pouch�

"   ls: prefix for Chubby lock service�

"   foo: the Chubby cell, resolved via DNS 
lookup �

"   /wombat/pouch, resolved inside of the cell�

"   Supports for use as master changes�
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Files, Directories, and 
Handles�

"   Supports a strict tree of files and directories�

"   Supports traditional file operations e.g. create, 
delete, open, write... but no path-dependent 
operations, like move�

"   Supports advisory reader and writer lock on a node - 
it only prevents others from getting an advisory lock 
on the same file, but does not actually prevent the 
read or write.�

"   Meta-data on nodes (files and dirs) includes: Access 
Control List for Read, Write and Change of ACL; 4 
increasing 64-bit numbers (instance, content 
generation, lock gen, ACL gen); 64-bit file-content 
check sum�
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Locks and Sequencers�
"   Locks (each file and directory will behave)�

"   Advisory and not mandatory�

"   Mandatory locks makes object inaccessible�

"   Sequencers (A byte-string describing the 
state of the lock after acquisition)�

"   Name, mode (exclusion or shared), number�

"   Server validates this and handle requests�
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Events�
"   Clients can subscribe to many events�

"   File contents modified - monitor the location of a 
service advertised via the file�

"   Child node added, removed, modified - mirroring �

"   Master failed over - warning for clients�

"   Handle becomes invalid - usually communication 
problem�

"   Lock acquired  - if a primary has been elected 
(rarely used)�

"   Conflicting locks - allows the caching of locks 
(rarely used)�
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APIs�
"   Open() creates handles, takes a node name�

"   Close() destroys handles; Poison() causes fail directly�

"   GetContentsAndStat() returns content and meta-data; 
GetStat() for meta-data; ReadDir() for children �

"   SetContents() sets all contents to a file; SetACL()�

"   Delete() deletes the node if it has no children �

"   Acquire(), TryAcquire(), Release() for locks�

"   GetSequencer(), SetSequencer(), CheckSequencer() for 
sequencers�



46�

Caching�
"   Objective: To reduce the read traffic�

"   File data and meta data are cached on clients�

"   Consistent, write-through�

"   Master will invalidate cached copies when a write 
request is initiated�

"   List of what clients may have cached�

"   Sends invalidations on top of KeepAlive to clients�

"   Clients flush the changed data�

"   Servers starts the modification �
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Sessions, KeepAlives�

"   Session maintained through KeepAlives (Periodic 
handshakes)�

"   A client sends KeepAlive requests to a master�

"   A master responds by a KeepAlive response�

"   Clients maintain a local timer to estimate the session 
timeouts, which are not perfectly synchronized�

"   If local timer expires (session in jeopardy), wait for a 
grace period (45s) before ending the session �
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Fail-overs�

Old Master� New Master�

Client �

No Master�

lease M1 �

lease C1 �

lease M2�

lease C2� grace�
lease C3�

lease M3�

jeopardy�

new master 
elected�

safe�

KeepAlive Request �Master commits to �
lease M2 and reply�KeepAlive Request �KeepAlive Request �Reject: Wrong �

epoch Number�
Retried Request �Allows to �

extend C3�
KeepAlive �
Request �
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Other Specs�
"   Database Implementation �

"   Berkeley DB - logging and snapshotting �

"   Backup �

"   The master writes a snapshot of its 
database to a GFS server�

"   Mirroring �

"   A collection of files can be mirrored from 
one cell to another, e.g. configuration files�
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Mechanisms for Scaling �
"   90,000 clients communicate with a single cell�

"   Server machine is the same with clients, 
so the master may be overwhelmed�

"   Regulate the number of Chubby cells�

"   Reduce communication �

"   Increase lease time�

"   Client caching �

"   Protocol-conversion servers�
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Mechanisms for Scaling: 
Proxies�

"   Passes requests from clients to the cell�

"   Reduces server load by handling both 
KeepAlive and read requests, but not for 
write traffic, which passes through the 
proxy’s cache�

"   Writes are just a small portion �

"   Needs additional RPC to writes and first-
time read�
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Mechanisms for Scaling: 
Partitioning �

"   Partitioning of namespace between servers�

"   N partitions, each has a set of replicas and a 
master�

"   Node D/C in D is in P(D/C) == hash(D) mod N �

"   Meta-data for D may be different �

"   Intends to enable large Chubby cells with 
little communication between partitions�
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Use and Behaviors�

"   What can we see from this table?�
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Use and Behaviors�
"   Many files are used for naming �

"   Configuration, access control and meta-data 
files are common �

"   Negative caching is significant �

"   Around 10 clients use each cache file�

"   Few clients hold locks and shared locks are 
rare�

"   RPC traffic is dominated by session 
KeepAlives�
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Outages�

"   Recorded 61 outages over a few weeks�

"   700 cell-days of data in total�

"   Most 15s or less, and 52 of them were 
under 30s�

"   Main causes: network congestion, 
maintenance, overload, and errors due to 
operators, software, and hardware.�
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Summary"�

"   What did we get from Chubby?�

"   Lock service with Paxos protocol�

"   Design for Loosely-coupled distributed 
system�

"   UNIX-like filesystem interface�

"   Reliability and availability�



Discussion �
"   “Fine-grained locking could be ignored” v. “design of a 

two tier locking system supporting both coarse and 
fine lockings”�

"   “Chubby is a single system that provides multiple 
services. This could mean that if one of the service 
requirements is changed, the whole system needs to 
be updated or even re-written.”�

"   What can we do about KeepAlives?�

"   Other Questions?�

"   Thanks for your attention! �

Reference: http://www.cs.cmu.edu/~chensm/Big_Data_reading_group/slides/shimin-chubby.ppt �


