
Furquan	
 Shaikh	

Paxos Replicated State Machines as the
Basis of a High-Performance Data Store	

February	
 12,	
 2013	

CS 525
Advanced Distributed

Systems
Spring 2013

Slides	
 Reference:	

h/p://sta4c.usenix.org/events/nsdi11/tech/slides/bolosky.pdf	

Implemen4ng_FaultTolerant_Services_Using_the_State_Machine_Approach_A_Tutorial	

	
 1	

BACKGROUND	
 AND	
 MOTIVATION	

2	

State	
 Machine	

3	

Faults	

•  Fault:	
 System	
 behavior	
 inconsistent	
 with	
 the	

specificaLon	

•  Failure	
 models:	

– ByzanLne	
 Failures	

– Fail-­‐stop	
 Failures	

•  t-­‐fault	
 tolerant:	
 system	
 that	
 saLsfies	

specificaLon	
 provided	
 no	
 more	
 than	
 t	
 of	
 its	

components	
 become	
 faulty	

4	

Replicated	
 State	
 Machines	

•  A	
 fault	
 tolerant	
 state	
 machine	
 can	
 be	

implemented	
 by	
 replicaLng	
 that	
 state	
 machine	

on	
 each	
 of	
 the	
 processors	
 in	
 a	
 distributed	
 system.	

•  Requirements	
 of	
 Replica	

–  Same	
 iniLal	
 state	

–  Execute	
 the	
 same	
 request	
 in	
 the	
 exact	
 same	
 order	

–  Perform	
 the	
 same	
 thing	
 and	
 produce	
 the	
 same	
 output	

5	

Client-­‐server	
 model	

Client1

Client2

Client3

Client4

Network Server

6	

Fault	
 tolerance	
 using	
 Replicated	
 State	

Machines	

Client1

Client2

Client3

Client4

Network

Server
Replica n-2

Server
Replica 1

Server
Replica n-1

Server
Replica n

7	

REPLICATED	
 STATE	
 MACHINES	
 FOR	

MAKING	
 DATA	
 STORES	
 FAULT	

TOLERANT	

8	

ConvenLonal	
 Systems	

•  Primary-­‐backup	
 Replica=on	
 	

–  Run	
 at	
 slower	
 rate	
 of	
 primary,	
 may	
 rely	
 on	
 some	
 kind	

of	
 clock	
 synchronizaLon	

•  Google	
 File	
 System	

– Append	
 mostly	
 files,	
 weaker	
 consistency,	
 sacrifices	

efficiency	
 for	
 overwrites	

•  Google’s	
 Chubby	
 Lock	
 Service	

–  Relies	
 on	
 clock	
 synchronizaLon	

•  Storage	
 Area	
 Networks	
 (SANs)	

–  Costlier,	
 use	
 special	
 hardware	
 (eg.	
 Ba^ery-­‐backed	

RAM)	

9	

Breaking	
 the	
 Trend	

•  Is	
 it	
 possible	
 to	
 build	
 a	
 fault-­‐tolerant	
 high-­‐
performance	
 data	
 store	
 from	
 commodity	

parts?	
 Without	
 compromising	
 on	
 semanLcs	
 or	

relying	
 on	
 special	
 hardware	
 or	
 clock	

synchronizaLon?	

•  The	
 answer	
 is	
 PAXOS	
 Replicated	
 State	

Machine	

10	

Paxos	
 Replicated	
 State	
 Machines	

•  Features:	

– SequenLally	
 consistent	

– Persistent	

– Fault	
 tolerant	

– Don’t	
 rely	
 on	
 clock	
 sync	
 for	
 correctness	

– Considered	
 slow	
 (???)	

	

	

11	

Applicable	
 Scenarios	

•  For	
 data	
 center	
 systems:	

– Consistency	
 and	
 availability	
 is	
 preferred	
 over	

parLLon	
 tolerance	
 (CAP	
 theorem)	

– OperaLon	
 latencies	
 ≥	
 Network	
 Latencies	

•  Paxos	
 Replicated	
 State	
 Machines:	

– Almost	
 (or	
 be^er	
 than)	
 base	
 performance	

– No	
 need	
 for	
 compromise	

12	

GAIOS	
 and	
 SMARTER	

William	
 Bolosky	
 et	
 al	
 (Microsoh	

Research)	

13	

How	
 is	
 PAXOS	
 used?	

•  Paxos	
 is	
 a	
 protocol	
 for	
 guaranteeing	
 input	

ordering	
 even	
 with:	

– MulLple	
 clients	

– Unreliable	
 networks	

– No	
 synchronized	
 clocks	

– Unlimited	
 machine	
 reboots	

– Some	
 permanent	
 stopping	
 faults	
 (i.e.	
 disk	
 losses)	

– But	
 not	
 ByzanLne	
 faults	

14	

Basic	
 OperaLon	

Client	

Leader	

Member	

Member	

Client	
 Request	
 Proposal	
 Logging	
 Log	
 Complete	
 Log	
 Complete	
 +	
 ACK	
 Commit	
 Reply	
 Extra	
 Reply	

15	

4K	
 Write	
 Latency	
 Timeline	

16	

Gaios	
 Architecture	

17	

How	
 is	
 efficiency	
 achieved?	

•  Pipelining	

•  Batching	
 client	
 requests	

•  Batched	
 write	
 behind	

•  Overlap	
 fetch	
 with	
 logging	

•  Novel	
 read-­‐only	
 operaLon	
 protocol	
 that	

allows	
 consistent	
 reads	
 from	
 any	
 node	

18	

Read	
 Consistency	
 Property	

•  When	
 a	
 read-­‐only	
 request	
 R	
 completes,	
 it	

reflects	
 any	
 data	
 known	
 by	
 any	
 client	
 to	
 be	

wri^en	
 at	
 the	
 Lme	
 R	
 was	
 sent.	
 	

•  Only	
 need	
 to	
 run	
 in	
 one	
 place	

•  Using	
 all	
 disks	
 can	
 enhance	
 performance	

(load-­‐balancing)	

•  Dynamically	
 selecLng	
 locaLon	
 helps	
 	

– Avoid	
 nodes	
 that	
 are	
 wriLng	
 (avoid	
 read	
 write	

contenLon)	

19	

Read	
 Write	
 ContenLon	

20	

Read-­‐only	
 OperaLon	

Read	
 Request	
 Leadership	
 Check	
 Leadership	
 Reply	
 Read	
 Complete	
 Client	
 Reply	

21	

4K	
 Read	
 Latency	
 Time	

22	

Performance	
 EvaluaLon	

23	

8K	
 Random	
 Read	
 Throughput	

(Lots	
 of	
 outstanding	
 requests)	

24	

Random	
 IO	
 performance	

25	

SequenLal	
 IO	
 performance	

26	

OLTP	
 Performance	

27	

Summary	

•  Paxos	
 RSMs	
 work	
 perfectly	
 fine	
 for	
 high-­‐
performance	
 disk-­‐based	
 applicaLons	

•  No	
 need	
 to	
 compromise	
 on	
 semanLcs,	
 or	
 buy	

special	
 hardware,	
 depend	
 on	
 clocks,	
 etc.	

28	

Points	
 to	
 ponder	

•  What	
 happens	
 in	
 case	
 of	
 parLLon?	

•  Is	
 this	
 suitable	
 for	
 WANs?	

•  	
 What	
 is	
 the	
 performance	
 in	
 view	
 of	
 faults?	

•  Can	
 this	
 system	
 be	
 run	
 completely	
 out	
 of	

memory?	
 (i.e.	
 moving	
 logs	
 out	
 of	
 disk)	

•  What	
 will	
 happen	
 with	
 new	
 advancement	
 in	

disk	
 technology?	
 SSD,	
 flash?	

29	

Spinnaker	

•  Experimental	
 datastore	

•  Runs	
 on	
 large	
 cluster	
 of	
 commodity	
 servers	
 in	

data	
 center	

•  Key-­‐based	
 range	
 parLLonining	

•  3-­‐way	
 replicaLon	

•  OpLonal	
 strong	
 /Lmeline	
 consistency	

30	

Spinnaker	
 cluster	

31	

API	

32	

Conclusion	

•  Paxos	
 based	
 replicaLon	
 systems	
 for	

guaranteeing	
 CA	

•  Suitable	
 for	
 data	
 center	
 like	
 systems	

•  TradiLonal	
 thought	
 that	
 Paxos	
 slows	
 down	

system	
 not	
 true	
 under	
 the	
 light	
 of	
 higher	

latency	
 operaLons	

33	

The Chubby lock service for
loosely-coupled distributed systems�

Mike Burrows�
�

Presented by Fangzhou Yao �
CS 525 Feb 12th, 2013�

35�

Introduction �
"   Chubby�

"   Lock service in a loosely-coupled
distributed system e.g. 10k 4-processor
machines connected by 1Gbit/s Ethernet �

"   Client interface similar to a simple file
system that performs whole-file reads and
writes�

"   Objectives: availability and reliability�

"   Used for: GFS, Bigtable�

"   Meta-data filesystem, name service, etc.�

36�

Design �

Client
Application �

Chubby
Library �

Client
Application �

Chubby
Library �

...�
client processes�

5 servers (replicas)�
of a Chubby cell�

Master�

RPC�

“How the cells are connected and consistent?”�
Is RPC obsolete? Suggestions for a replacement?�

37�

System Structure�
"   A Chubby cell consists of a small set of

servers (usually five) known as replicas�

"   Replicas use a distributed consensus protocol
(Paxos) to elect a master�

"   Master lease: time interval that replicas
will not elect a new master (majority in
votes), usually a few seconds�

"   Upon failure, a new election will be
initiated after the lease�

38�

System Structure�
"   Replicas maintain copies of a simple database�

"   Only the master reads and writes to it �

"   Others update from the master�

"   Clients send read and write requests only to
the master�

"   Finding the master by sending master
location requests to replicas listed in DNS�

"   Clients talk to the master though the
Chubby library�

39�

System Structure�
"   Write requests�

"   The master sends it to all replicas via the
consensus protocol (Paxos, again) �

"   Replies after the write reaches a majority
of replicas�

"   Read requests�

"   The master satisfies the read alone�

"   This is safe because of the master lease -
no other masters at the same time�

40�

System Structure�
"   If a replica fails and does not recover for

some time, like a few hours�

"   A fresh machine from the free pool is
selected to be a new replica as a
replacement �

"   Updates the DNS tables, replacing IP�

"   Obtains a recent copy of the database�

"   The current master checks DNS
periodically for new replicas�

41 �

Files, Directories, and
Handles�

"   UNIX-like filesystem interface �

"   /ls/foo/wombat/pouch�

"   ls: prefix for Chubby lock service�

"   foo: the Chubby cell, resolved via DNS
lookup �

"   /wombat/pouch, resolved inside of the cell�

"   Supports for use as master changes�

42�

Files, Directories, and
Handles�

"   Supports a strict tree of files and directories�

"   Supports traditional file operations e.g. create,
delete, open, write... but no path-dependent
operations, like move�

"   Supports advisory reader and writer lock on a node -
it only prevents others from getting an advisory lock
on the same file, but does not actually prevent the
read or write.�

"   Meta-data on nodes (files and dirs) includes: Access
Control List for Read, Write and Change of ACL; 4
increasing 64-bit numbers (instance, content
generation, lock gen, ACL gen); 64-bit file-content
check sum�

43�

Locks and Sequencers�
"   Locks (each file and directory will behave)�

"   Advisory and not mandatory�

"   Mandatory locks makes object inaccessible�

"   Sequencers (A byte-string describing the
state of the lock after acquisition)�

"   Name, mode (exclusion or shared), number�

"   Server validates this and handle requests�

44�

Events�
"   Clients can subscribe to many events�

"   File contents modified - monitor the location of a
service advertised via the file�

"   Child node added, removed, modified - mirroring �

"   Master failed over - warning for clients�

"   Handle becomes invalid - usually communication
problem�

"   Lock acquired - if a primary has been elected
(rarely used)�

"   Conflicting locks - allows the caching of locks
(rarely used)�

45�

APIs�
"   Open() creates handles, takes a node name�

"   Close() destroys handles; Poison() causes fail directly�

"   GetContentsAndStat() returns content and meta-data;
GetStat() for meta-data; ReadDir() for children �

"   SetContents() sets all contents to a file; SetACL()�

"   Delete() deletes the node if it has no children �

"   Acquire(), TryAcquire(), Release() for locks�

"   GetSequencer(), SetSequencer(), CheckSequencer() for
sequencers�

46�

Caching�
"   Objective: To reduce the read traffic�

"   File data and meta data are cached on clients�

"   Consistent, write-through�

"   Master will invalidate cached copies when a write
request is initiated�

"   List of what clients may have cached�

"   Sends invalidations on top of KeepAlive to clients�

"   Clients flush the changed data�

"   Servers starts the modification �

47�

Sessions, KeepAlives�

"   Session maintained through KeepAlives (Periodic
handshakes)�

"   A client sends KeepAlive requests to a master�

"   A master responds by a KeepAlive response�

"   Clients maintain a local timer to estimate the session
timeouts, which are not perfectly synchronized�

"   If local timer expires (session in jeopardy), wait for a
grace period (45s) before ending the session �

48�

Fail-overs�

Old Master� New Master�

Client �

No Master�

lease M1 �

lease C1 �

lease M2�

lease C2� grace�
lease C3�

lease M3�

jeopardy�

new master
elected�

safe�

KeepAlive Request �Master commits to �
lease M2 and reply�KeepAlive Request �KeepAlive Request �Reject: Wrong �

epoch Number�
Retried Request �Allows to �

extend C3�
KeepAlive �
Request �

49�

Other Specs�
"   Database Implementation �

"   Berkeley DB - logging and snapshotting �

"   Backup �

"   The master writes a snapshot of its
database to a GFS server�

"   Mirroring �

"   A collection of files can be mirrored from
one cell to another, e.g. configuration files�

50�

Mechanisms for Scaling �
"   90,000 clients communicate with a single cell�

"   Server machine is the same with clients,
so the master may be overwhelmed�

"   Regulate the number of Chubby cells�

"   Reduce communication �

"   Increase lease time�

"   Client caching �

"   Protocol-conversion servers�

51 �

Mechanisms for Scaling:
Proxies�

"   Passes requests from clients to the cell�

"   Reduces server load by handling both
KeepAlive and read requests, but not for
write traffic, which passes through the
proxy’s cache�

"   Writes are just a small portion �

"   Needs additional RPC to writes and first-
time read�

52�

Mechanisms for Scaling:
Partitioning �

"   Partitioning of namespace between servers�

"   N partitions, each has a set of replicas and a
master�

"   Node D/C in D is in P(D/C) == hash(D) mod N �

"   Meta-data for D may be different �

"   Intends to enable large Chubby cells with
little communication between partitions�

53�

Use and Behaviors�

"   What can we see from this table?�

54�

Use and Behaviors�
"   Many files are used for naming �

"   Configuration, access control and meta-data
files are common �

"   Negative caching is significant �

"   Around 10 clients use each cache file�

"   Few clients hold locks and shared locks are
rare�

"   RPC traffic is dominated by session
KeepAlives�

55�

Outages�

"   Recorded 61 outages over a few weeks�

"   700 cell-days of data in total�

"   Most 15s or less, and 52 of them were
under 30s�

"   Main causes: network congestion,
maintenance, overload, and errors due to
operators, software, and hardware.�

56�

Summary"�

"   What did we get from Chubby?�

"   Lock service with Paxos protocol�

"   Design for Loosely-coupled distributed
system�

"   UNIX-like filesystem interface�

"   Reliability and availability�

Discussion �
"   “Fine-grained locking could be ignored” v. “design of a

two tier locking system supporting both coarse and
fine lockings”�

"   “Chubby is a single system that provides multiple
services. This could mean that if one of the service
requirements is changed, the whole system needs to
be updated or even re-written.”�

"   What can we do about KeepAlives?�

"   Other Questions?�

"   Thanks for your attention! �

Reference: http://www.cs.cmu.edu/~chensm/Big_Data_reading_group/slides/shimin-chubby.ppt �

