
Furquan	 Shaikh	
Paxos Replicated State Machines as the
Basis of a High-Performance Data Store	

February	 12,	 2013	

CS 525
Advanced Distributed

Systems
Spring 2013

Slides	 Reference:	
h/p://sta4c.usenix.org/events/nsdi11/tech/slides/bolosky.pdf	
Implemen4ng_FaultTolerant_Services_Using_the_State_Machine_Approach_A_Tutorial	
	 1	

BACKGROUND	 AND	 MOTIVATION	

2	

State	 Machine	

3	

Faults	

•  Fault:	 System	 behavior	 inconsistent	 with	 the	
specificaLon	

•  Failure	 models:	
– ByzanLne	 Failures	
– Fail-‐stop	 Failures	

•  t-‐fault	 tolerant:	 system	 that	 saLsfies	
specificaLon	 provided	 no	 more	 than	 t	 of	 its	
components	 become	 faulty	

4	

Replicated	 State	 Machines	

•  A	 fault	 tolerant	 state	 machine	 can	 be	
implemented	 by	 replicaLng	 that	 state	 machine	
on	 each	 of	 the	 processors	 in	 a	 distributed	 system.	

•  Requirements	 of	 Replica	
–  Same	 iniLal	 state	
–  Execute	 the	 same	 request	 in	 the	 exact	 same	 order	
–  Perform	 the	 same	 thing	 and	 produce	 the	 same	 output	

5	

Client-‐server	 model	

Client1

Client2

Client3

Client4

Network Server

6	

Fault	 tolerance	 using	 Replicated	 State	
Machines	

Client1

Client2

Client3

Client4

Network

Server
Replica n-2

Server
Replica 1

Server
Replica n-1

Server
Replica n

7	

REPLICATED	 STATE	 MACHINES	 FOR	
MAKING	 DATA	 STORES	 FAULT	

TOLERANT	

8	

ConvenLonal	 Systems	
•  Primary-‐backup	 Replica=on	 	

–  Run	 at	 slower	 rate	 of	 primary,	 may	 rely	 on	 some	 kind	
of	 clock	 synchronizaLon	

•  Google	 File	 System	
– Append	 mostly	 files,	 weaker	 consistency,	 sacrifices	
efficiency	 for	 overwrites	

•  Google’s	 Chubby	 Lock	 Service	
–  Relies	 on	 clock	 synchronizaLon	

•  Storage	 Area	 Networks	 (SANs)	
–  Costlier,	 use	 special	 hardware	 (eg.	 Ba^ery-‐backed	
RAM)	

9	

Breaking	 the	 Trend	

•  Is	 it	 possible	 to	 build	 a	 fault-‐tolerant	 high-‐
performance	 data	 store	 from	 commodity	
parts?	 Without	 compromising	 on	 semanLcs	 or	
relying	 on	 special	 hardware	 or	 clock	
synchronizaLon?	

•  The	 answer	 is	 PAXOS	 Replicated	 State	
Machine	

10	

Paxos	 Replicated	 State	 Machines	

•  Features:	
– SequenLally	 consistent	
– Persistent	
– Fault	 tolerant	
– Don’t	 rely	 on	 clock	 sync	 for	 correctness	
– Considered	 slow	 (???)	

	
	

11	

Applicable	 Scenarios	

•  For	 data	 center	 systems:	
– Consistency	 and	 availability	 is	 preferred	 over	
parLLon	 tolerance	 (CAP	 theorem)	

– OperaLon	 latencies	 ≥	 Network	 Latencies	
•  Paxos	 Replicated	 State	 Machines:	

– Almost	 (or	 be^er	 than)	 base	 performance	
– No	 need	 for	 compromise	

12	

GAIOS	 and	 SMARTER	
William	 Bolosky	 et	 al	 (Microsoh	

Research)	

13	

How	 is	 PAXOS	 used?	

•  Paxos	 is	 a	 protocol	 for	 guaranteeing	 input	
ordering	 even	 with:	
– MulLple	 clients	
– Unreliable	 networks	
– No	 synchronized	 clocks	
– Unlimited	 machine	 reboots	
– Some	 permanent	 stopping	 faults	 (i.e.	 disk	 losses)	
– But	 not	 ByzanLne	 faults	

14	

Basic	 OperaLon	

Client	

Leader	

Member	

Member	

Client	 Request	 Proposal	 Logging	 Log	 Complete	 Log	 Complete	 +	 ACK	 Commit	 Reply	 Extra	 Reply	
15	

4K	 Write	 Latency	 Timeline	

16	

Gaios	 Architecture	

17	

How	 is	 efficiency	 achieved?	

•  Pipelining	
•  Batching	 client	 requests	
•  Batched	 write	 behind	
•  Overlap	 fetch	 with	 logging	

•  Novel	 read-‐only	 operaLon	 protocol	 that	
allows	 consistent	 reads	 from	 any	 node	

18	

Read	 Consistency	 Property	

•  When	 a	 read-‐only	 request	 R	 completes,	 it	
reflects	 any	 data	 known	 by	 any	 client	 to	 be	
wri^en	 at	 the	 Lme	 R	 was	 sent.	 	

•  Only	 need	 to	 run	 in	 one	 place	
•  Using	 all	 disks	 can	 enhance	 performance	
(load-‐balancing)	

•  Dynamically	 selecLng	 locaLon	 helps	 	
– Avoid	 nodes	 that	 are	 wriLng	 (avoid	 read	 write	
contenLon)	

19	

Read	 Write	 ContenLon	

20	

Read-‐only	 OperaLon	

Read	 Request	 Leadership	 Check	 Leadership	 Reply	 Read	 Complete	 Client	 Reply	
21	

4K	 Read	 Latency	 Time	

22	

Performance	 EvaluaLon	

23	

8K	 Random	 Read	 Throughput	
(Lots	 of	 outstanding	 requests)	

24	

Random	 IO	 performance	

25	

SequenLal	 IO	 performance	

26	

OLTP	 Performance	

27	

Summary	

•  Paxos	 RSMs	 work	 perfectly	 fine	 for	 high-‐
performance	 disk-‐based	 applicaLons	

•  No	 need	 to	 compromise	 on	 semanLcs,	 or	 buy	
special	 hardware,	 depend	 on	 clocks,	 etc.	

28	

Points	 to	 ponder	

•  What	 happens	 in	 case	 of	 parLLon?	
•  Is	 this	 suitable	 for	 WANs?	
•  	 What	 is	 the	 performance	 in	 view	 of	 faults?	
•  Can	 this	 system	 be	 run	 completely	 out	 of	
memory?	 (i.e.	 moving	 logs	 out	 of	 disk)	

•  What	 will	 happen	 with	 new	 advancement	 in	
disk	 technology?	 SSD,	 flash?	

29	

Spinnaker	

•  Experimental	 datastore	
•  Runs	 on	 large	 cluster	 of	 commodity	 servers	 in	
data	 center	

•  Key-‐based	 range	 parLLonining	
•  3-‐way	 replicaLon	
•  OpLonal	 strong	 /Lmeline	 consistency	

30	

Spinnaker	 cluster	

31	

API	

32	

Conclusion	

•  Paxos	 based	 replicaLon	 systems	 for	
guaranteeing	 CA	

•  Suitable	 for	 data	 center	 like	 systems	
•  TradiLonal	 thought	 that	 Paxos	 slows	 down	
system	 not	 true	 under	 the	 light	 of	 higher	
latency	 operaLons	

33	

The Chubby lock service for
loosely-coupled distributed systems�

Mike Burrows�
�

Presented by Fangzhou Yao �
CS 525 Feb 12th, 2013�

35�

Introduction �
"   Chubby�

"   Lock service in a loosely-coupled
distributed system e.g. 10k 4-processor
machines connected by 1Gbit/s Ethernet �

"   Client interface similar to a simple file
system that performs whole-file reads and
writes�

"   Objectives: availability and reliability�

"   Used for: GFS, Bigtable�

"   Meta-data filesystem, name service, etc.�

36�

Design �

Client
Application �

Chubby
Library �

Client
Application �

Chubby
Library �

...�
client processes�

5 servers (replicas)�
of a Chubby cell�

Master�

RPC�

“How the cells are connected and consistent?”�
Is RPC obsolete? Suggestions for a replacement?�

37�

System Structure�
"   A Chubby cell consists of a small set of

servers (usually five) known as replicas�

"   Replicas use a distributed consensus protocol
(Paxos) to elect a master�

"   Master lease: time interval that replicas
will not elect a new master (majority in
votes), usually a few seconds�

"   Upon failure, a new election will be
initiated after the lease�

38�

System Structure�
"   Replicas maintain copies of a simple database�

"   Only the master reads and writes to it �

"   Others update from the master�

"   Clients send read and write requests only to
the master�

"   Finding the master by sending master
location requests to replicas listed in DNS�

"   Clients talk to the master though the
Chubby library�

39�

System Structure�
"   Write requests�

"   The master sends it to all replicas via the
consensus protocol (Paxos, again) �

"   Replies after the write reaches a majority
of replicas�

"   Read requests�

"   The master satisfies the read alone�

"   This is safe because of the master lease -
no other masters at the same time�

40�

System Structure�
"   If a replica fails and does not recover for

some time, like a few hours�

"   A fresh machine from the free pool is
selected to be a new replica as a
replacement �

"   Updates the DNS tables, replacing IP�

"   Obtains a recent copy of the database�

"   The current master checks DNS
periodically for new replicas�

41 �

Files, Directories, and
Handles�

"   UNIX-like filesystem interface �

"   /ls/foo/wombat/pouch�

"   ls: prefix for Chubby lock service�

"   foo: the Chubby cell, resolved via DNS
lookup �

"   /wombat/pouch, resolved inside of the cell�

"   Supports for use as master changes�

42�

Files, Directories, and
Handles�

"   Supports a strict tree of files and directories�

"   Supports traditional file operations e.g. create,
delete, open, write... but no path-dependent
operations, like move�

"   Supports advisory reader and writer lock on a node -
it only prevents others from getting an advisory lock
on the same file, but does not actually prevent the
read or write.�

"   Meta-data on nodes (files and dirs) includes: Access
Control List for Read, Write and Change of ACL; 4
increasing 64-bit numbers (instance, content
generation, lock gen, ACL gen); 64-bit file-content
check sum�

43�

Locks and Sequencers�
"   Locks (each file and directory will behave)�

"   Advisory and not mandatory�

"   Mandatory locks makes object inaccessible�

"   Sequencers (A byte-string describing the
state of the lock after acquisition)�

"   Name, mode (exclusion or shared), number�

"   Server validates this and handle requests�

44�

Events�
"   Clients can subscribe to many events�

"   File contents modified - monitor the location of a
service advertised via the file�

"   Child node added, removed, modified - mirroring �

"   Master failed over - warning for clients�

"   Handle becomes invalid - usually communication
problem�

"   Lock acquired - if a primary has been elected
(rarely used)�

"   Conflicting locks - allows the caching of locks
(rarely used)�

45�

APIs�
"   Open() creates handles, takes a node name�

"   Close() destroys handles; Poison() causes fail directly�

"   GetContentsAndStat() returns content and meta-data;
GetStat() for meta-data; ReadDir() for children �

"   SetContents() sets all contents to a file; SetACL()�

"   Delete() deletes the node if it has no children �

"   Acquire(), TryAcquire(), Release() for locks�

"   GetSequencer(), SetSequencer(), CheckSequencer() for
sequencers�

46�

Caching�
"   Objective: To reduce the read traffic�

"   File data and meta data are cached on clients�

"   Consistent, write-through�

"   Master will invalidate cached copies when a write
request is initiated�

"   List of what clients may have cached�

"   Sends invalidations on top of KeepAlive to clients�

"   Clients flush the changed data�

"   Servers starts the modification �

47�

Sessions, KeepAlives�

"   Session maintained through KeepAlives (Periodic
handshakes)�

"   A client sends KeepAlive requests to a master�

"   A master responds by a KeepAlive response�

"   Clients maintain a local timer to estimate the session
timeouts, which are not perfectly synchronized�

"   If local timer expires (session in jeopardy), wait for a
grace period (45s) before ending the session �

48�

Fail-overs�

Old Master� New Master�

Client �

No Master�

lease M1 �

lease C1 �

lease M2�

lease C2� grace�
lease C3�

lease M3�

jeopardy�

new master
elected�

safe�

KeepAlive Request �Master commits to �
lease M2 and reply�KeepAlive Request �KeepAlive Request �Reject: Wrong �

epoch Number�
Retried Request �Allows to �

extend C3�
KeepAlive �
Request �

49�

Other Specs�
"   Database Implementation �

"   Berkeley DB - logging and snapshotting �

"   Backup �

"   The master writes a snapshot of its
database to a GFS server�

"   Mirroring �

"   A collection of files can be mirrored from
one cell to another, e.g. configuration files�

50�

Mechanisms for Scaling �
"   90,000 clients communicate with a single cell�

"   Server machine is the same with clients,
so the master may be overwhelmed�

"   Regulate the number of Chubby cells�

"   Reduce communication �

"   Increase lease time�

"   Client caching �

"   Protocol-conversion servers�

51 �

Mechanisms for Scaling:
Proxies�

"   Passes requests from clients to the cell�

"   Reduces server load by handling both
KeepAlive and read requests, but not for
write traffic, which passes through the
proxy’s cache�

"   Writes are just a small portion �

"   Needs additional RPC to writes and first-
time read�

52�

Mechanisms for Scaling:
Partitioning �

"   Partitioning of namespace between servers�

"   N partitions, each has a set of replicas and a
master�

"   Node D/C in D is in P(D/C) == hash(D) mod N �

"   Meta-data for D may be different �

"   Intends to enable large Chubby cells with
little communication between partitions�

53�

Use and Behaviors�

"   What can we see from this table?�

54�

Use and Behaviors�
"   Many files are used for naming �

"   Configuration, access control and meta-data
files are common �

"   Negative caching is significant �

"   Around 10 clients use each cache file�

"   Few clients hold locks and shared locks are
rare�

"   RPC traffic is dominated by session
KeepAlives�

55�

Outages�

"   Recorded 61 outages over a few weeks�

"   700 cell-days of data in total�

"   Most 15s or less, and 52 of them were
under 30s�

"   Main causes: network congestion,
maintenance, overload, and errors due to
operators, software, and hardware.�

56�

Summary"�

"   What did we get from Chubby?�

"   Lock service with Paxos protocol�

"   Design for Loosely-coupled distributed
system�

"   UNIX-like filesystem interface�

"   Reliability and availability�

Discussion �
"   “Fine-grained locking could be ignored” v. “design of a

two tier locking system supporting both coarse and
fine lockings”�

"   “Chubby is a single system that provides multiple
services. This could mean that if one of the service
requirements is changed, the whole system needs to
be updated or even re-written.”�

"   What can we do about KeepAlives?�

"   Other Questions?�

"   Thanks for your attention! �

Reference: http://www.cs.cmu.edu/~chensm/Big_Data_reading_group/slides/shimin-chubby.ppt �

