
In-Memory Clusters

Mainak Ghosh and Hilfi Alkaff

Photo Courtesy: http://www.clker.com/

http://www.clker.com/clipart-brain-outline-1.html
http://www.clker.com/clipart-brain-outline-1.html
http://www.clker.com/clipart-brain-outline-1.html

PACMan: Coordinated memory
caching for parallel jobs

Presenter: Mainak Ghosh

Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang,
Dhruba Borthakur, Srikanth Kandula,

Scott Shenker, Ion Stoica

Content of this presentation is borrowed heavily from the original
author’s paper and presentation:
https://www.usenix.org/system/files/conference/nsdi12/pacman.pdf

Paper In A Slide

Problem: Data intensive jobs in large clusters
have large execution times.

Key Observation:

• Jobs comprise of IO-intensive execution
phases which run in parallel.

• Clusters have machines with large memory
which are underutilized.

Strategy: In-memory caching of input data.

4/22/2013 3

Terminology

• Task

• Wave

• Single Wave Job

• Multi Wave Job

• Completion Time

• Cluster Efficiency

 Goal: Reduce completion time and
increase cluster efficiency

4/22/2013 4

Industry Speaks…

Large fraction of jobs fits the memory

4/22/2013 5

Industry Speaks…

Large number of jobs have small number
of task size and input file size

4/22/2013 6

Is it enough?

slot2

slot1

time
completion

time

slot2

slot1

time
completion

time

Task duration
(uncached input)

Task duration
(cached input)

All-or-nothing: Unless all inputs are cached,
there is no benefit

slot2

slot1

time
completion

time

4/22/2013 7

Cluster Efficiency?

• All-or-nothing property matters for utilization

• Tasks of different phases overlap

– Reduce tasks start before all map tasks finish (to
overlap communication)

All-or-

nothing 
No wastage!

4/22/2013 8

Cache Replacement Policy
 View at the granularity of a job’s input (file)

 Focus evictions on incompletely cached waves– Sticky
Policy

slot1

slot2

slot3

slot4

slot5

slot6

slot7

slot8

completion

Hit-ratio: 75%

Job 1 speeds up

Job 1

Job 2

With
Sticky
Policy

slot1

slot2

slot3

slot4

slot5

slot6
a

slot7

slot8

completion

Hit-ratio: 75%

No speed-up of jobs

Job 1

Job 2

Task duration

(uncached input)
Task duration

(cached input)

Without
Sticky
Policy

4/22/2013 9

Reduction in Completion Time

• Idealized model for job:
– Wave-width for job: W

– Frequency predicts future access: F

– Data read is proportional to task length: D

– Speedup factor for cached tasks: µ

time

W

D

• Cost of caching: W D

• Benefit of caching: µD F
• Benefit/cost: µF/W

LIFE: Favor Jobs with lesser wave width

4/22/2013 10

Improvement in Utilization

• Idealized model for job:
– Wave-width for job: W

– Frequency predicts future access: F

– Data read is proportional to task length: D

– Speedup factor for cached tasks: µ

• Cost of caching: W D

• Benefit of caching: W µD F
• Benefit/cost: µF

LFU-F – Favor jobs with most recent accessed files

time

W

D

4/22/2013 11

System Design

Global view

4/22/2013 12

Evaluation Setup

• Workload derived from Facebook & Bing traces
– FB: 3500 node Hadoop cluster, 375K jobs, 1 month

– Bing: 1000’s of nodes Dryad cluster, 200K jobs, 6 weeks

• Prototype in conjunction with HDFS

• Experiments on 100-node EC2 cluster
– Cache of 20GB per machine

• Job Bins: Workload divided by number of map
tasks they contained

4/22/2013 13

Improvement in Completion Time
small jobs: largest
improvement under LIFE

Small jobs have lower wave-width

4/22/2013 14

Improvement in Cluster Efficiency
large jobs: largest
improvement under LFU-F

Large files are frequently accessed leading to lesser
eviction under LFU-F

4/22/2013 15

System Scalability Results

4/22/2013 16

Does not scale well

Summary

• All-or-nothing property of parallel jobs

– Cache all of the inputs of a job

• PACMan: Coordinated Cache Management

– Sticky policy: Evict from incomplete inputs

• LIFE for completion time, LFU-F for utilization

• Jobs are 53% faster, cluster utilization improves by
54%

4/22/2013 17

Discussion

• Can Pacman handle graph computation systems
like Pregel?

• Estimating wave width is hard for iterative
computation?

• Pacman system does not scale that well.
• Piazza

– Overhead of central coordinator
– Experimental evaluation use only Facebook and

Microsoft data
– Job Priority not considered
– Task dependency has not been studied or exploited

4/22/2013 18

Comparison w/ State-of-the-Art

4/22/2013 19

Resilient Distributed Datasets
A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley,
Michael Franklin, Scott Shenker, Ion Stoica

Presented by: Hilfi Alkaff
Content of this presentation is borrowed heavily from

the original author’s paper and presentation

Motivation
MapReduce greatly simplified “big data” analysis
on large, unreliable clusters

But as soon as it got popular, users wanted more:
»More complex, multi-stage applications

(e.g. iterative machine learning & graph processing)

»More interactive ad-hoc queries

Response: specialized frameworks for some of
these apps (e.g. Pregel for graph processing)

Motivation
Complex apps and interactive queries both need
one thing that MapReduce lacks:

Efficient primitives for data sharing

In MapReduce, the only way to share data
across jobs is stable storage  slow!

Examples

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to replication and disk I/O,
but necessary for fault tolerance

iter. 1 iter. 2 . . .

Input

Goal: In-Memory Data Sharing

Input

query 1

query 2

query 3

. . .

one-time
processing

10-100× faster than network/disk, but how to get FT?

Challenge

How to design a distributed memory abstraction
that is both fault-tolerant and efficient?

Challenge
Existing storage abstractions have interfaces
based on fine-grained updates to mutable state

»RAMCloud, databases, distributed mem, Piccolo

Requires replicating data or logs across nodes
for fault tolerance

»Costly for data-intensive apps
»10-100x slower than memory write

Solution: Resilient Distributed
Datasets (RDDs)

Restricted form of distributed shared memory
» Immutable, partitioned collections of records
»Can only be built through coarse-grained

deterministic transformations (map, filter, join, …)

Efficient fault recovery using lineage
»Log one operation to apply to many elements
»Recompute lost partitions on failure
»No cost if nothing fails

Input

query 1

query 2

query 3

. . .

RDD Recovery

one-time
processing

iter. 1 iter. 2 . . .

Input

Generality of RDDs
Despite their restrictions, RDDs can express
surprisingly many parallel algorithms

»These naturally apply the same operation to many items

Unify many current programming models
»Data flow models: MapReduce, Dryad, SQL, …
»Specialized models for iterative apps: BSP (Pregel),

iterative MapReduce (Haloop), bulk incremental, …

Support new apps that these models don’t

Memory
bandwidth

Network
bandwidth

Tradeoff Space

Granularity
of Updates

Write Throughput

Fine

Coarse

Low High

K-V
stores,
databases,
RAMCloud

Best for batch
workloads

Best for
transactional

workloads

HDFS RDDs

Spark Programming Interface

DryadLINQ-like API in the Scala language

Usable interactively from Scala interpreter

Provides:
»Resilient distributed datasets (RDDs)
»Operations on RDDs: transformations (build new RDDs),

actions (compute and output results)
»Control of each RDD’s partitioning (layout across nodes)

and persistence (storage in RAM, on disk, etc)

Spark Operations

Transformations
(define a new RDD)

map
filter

sample
groupByKey
reduceByKey

sortByKey

flatMap
union
join

cogroup
cross

mapValues

Actions
(return a result to
driver program)

collect
reduce
count
save

lookupKey

Example: Log Mining
Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

messages.persist()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Master

messages.filter(_.contains(“foo”)).count

messages.filter(_.contains(“bar”)).count

tasks

results

Msgs. 1

Msgs. 2

Msgs. 3

Base RDD Transformed RDD

Action

Result: full-text search of Wikipedia
in <1 sec (vs 20 sec for on-disk data)
Result: scaled to 1 TB data in 5-7 sec

(vs 170 sec for on-disk data)

RDDs track the graph of transformations that
built them (their lineage) to rebuild lost data

E.g.:

messages = textFile(...).filter(_.contains(“error”))
 .map(_.split(‘\t’)(2))

HadoopRDD

path = hdfs://…

FilteredRDD

func = _.contains(...)

MappedRDD

func = _.split(…)

Fault Recovery

HadoopRDD FilteredRDD MappedRDD

Fault Recovery Results

119

57 56 58 58

81

57 59 57 59

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

It
e

ra
tr

io
n

 t
im

e
 (

s)

Iteration

Failure happens

Example: PageRank

1. Start each page with a rank of 1

2. On each iteration, update each page’s rank to

Σi∈neighbors ranki / |neighborsi|

links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
 ranks = links.join(ranks).flatMap {
 (url, (links, rank)) =>
 links.map(dest => (dest, rank/links.size))
 }.reduceByKey(_ + _)
}

Optimizing Placement

links & ranks repeatedly joined

Can co-partition them (e.g. hash
both on URL) to avoid shuffles

Can also use app knowledge,
e.g., hash on DNS name

links = links.partitionBy(
 new URLPartitioner())

reduce

Contribs0

join

join

Contribs2

Ranks0
(url, rank)

Links
(url, neighbors)

. . .

Ranks2

reduce

Ranks1

PageRank Performance

171

72

23

0

50

100

150

200

T
im

e
 p

e
r

it
e

ra
ti

o
n

 (
s)

Hadoop

Basic Spark

Spark + Controlled
Partitioning

Scalability
18

4

11
1

76

11
6

8
0

62

15

6

3

0

50

100

150

200

250

25 50 100

It
e

ra
ti

o
n

 t
im

e
 (

s)

Number of machines

Hadoop

HadoopBinMem

Spark

27
4

15
7

10
6

19
7

12
1

87

14
3

6
1

33

0

50

100

150

200

250

300

25 50 100

It
e

ra
ti

o
n

 t
im

e
 (

s)

Number of machines

Hadoop

HadoopBinMem

Spark

Logistic Regression K-Means

Behavior with Insufficient RAM

6
8

.8

58
.1

4
0

.7

2
9

.7

11
.5

0

20

40

60

80

100

0% 25% 50% 75% 100%

It
e

ra
ti

o
n

 t
im

e
 (

s)

Percent of working set in memory

Stuff
 Express many existing parallel models

 Pregel (200 LOC), Iterative Map Reduce (200 LOC), SQL
 Apps could efficiently intermix these models

 Used by 5+ companies, 3+ applications projects at Berkeley
 Conviva, FourSquare, MobileMillenium

 Runs on Mesos [NSDI 11] to share clusters w/ Hadoop

 No changes to Scala language or compiler
 Reflection + bytecode analysis to correctly ship code

 Open-sourced at: www.spark-project.org

http://www.spark-project.org/
http://www.spark-project.org/
http://www.spark-project.org/

Aftermath
 Concept of priority for different jobs

 Which data to kick out?

 Currently just LRU

 Do we need to store data back to storage if

job is too long? When?

 Spark Streaming [HotCloud ‘12]

Conclusion

 RDDs offer a simple and efficient

programming model for a broad range of

applications

 Leverage the coarse-grained nature of many

parallel algorithms for low-overhead recovery

 Best suited for batch applications

Backup Slides

Traditional Streaming Systems

Fault tolerance via replication or upstream
backup:

node 1

node 3

node 2

node 1’

node 3’

node 2’

synchronization

node 1

node 3

node 2

standb

y

input

input

input

input

Fast recovery, but 2x
hardware cost

Only need 1 standby,
but slow to recover

Discretized Stream Processing

t = 1:

t = 2:

stream 1 stream 2

batch operation

pull input

…

…

input

immutable dataset
(stored reliably)

immutable
dataset

(output or state);
stored in memory

without
replication

…

Related Work
RAMCloud, Piccolo, GraphLab, parallel DBs

» Fine-grained writes requiring replication for resilience

Pregel, iterative MapReduce
» Specialized models; can’t run arbitrary / ad-hoc queries

DryadLINQ, FlumeJava
» Language-integrated “distributed dataset” API, but cannot

share datasets efficiently across queries

Nectar [OSDI 10]
» Automatic expression caching, but over distributed FS

PacMan [NSDI 12]
» Memory cache for HDFS, but writes still go to network/disk

