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Paper In A Slide 

Problem: Data intensive jobs in large clusters 
have large execution times. 

Key Observation:  

• Jobs comprise of IO-intensive execution 
phases which run in parallel. 

• Clusters have machines with large memory 
which are underutilized. 

Strategy: In-memory caching of input data. 
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Terminology 

• Task 

• Wave 

• Single Wave Job 

• Multi Wave Job 

• Completion Time 

• Cluster Efficiency 

 Goal: Reduce completion time and 
increase cluster efficiency 
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Industry Speaks… 

Large fraction of jobs fits the memory 
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Industry Speaks… 

Large number of jobs have small number 
of task size and input file size 
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Is it enough? 

slot2 

slot1 

time 
completion  

time 

slot2 

slot1 

time 
completion  

time 

Task duration  
(uncached input) 

Task duration  
(cached input) 

All-or-nothing: Unless all inputs are cached, 
there is no benefit 

slot2 

slot1 

time 
completion  

time 

4/22/2013 7 



Cluster Efficiency? 

• All-or-nothing property matters for utilization 

• Tasks of different phases overlap 

– Reduce tasks start before all map tasks finish (to 
overlap communication) 

 
All-or-

nothing   
No wastage! 
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Cache Replacement Policy 
 View at the granularity of a job’s input (file) 

 Focus evictions on incompletely cached waves– Sticky 
Policy 
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completion 
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Reduction in Completion Time 

• Idealized model for job: 
– Wave-width for job: W 

– Frequency predicts future access: F 

– Data read is proportional to task length: D 

– Speedup factor for cached tasks: µ 

time 

W 

D 

• Cost of caching:   W D 

• Benefit of caching:   µD F 
• Benefit/cost:   µF/W 

LIFE: Favor Jobs with lesser wave width 
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Improvement in Utilization 

• Idealized model for job: 
– Wave-width for job: W 

– Frequency predicts future access: F 

– Data read is proportional to task length: D 

– Speedup factor for cached tasks: µ 

 
• Cost of caching:  W D 

• Benefit of caching:  W µD F 
• Benefit/cost:  µF 

LFU-F – Favor jobs with most recent accessed files 

time 

W 

D 
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System Design 

Global view 
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Evaluation Setup 

• Workload derived from Facebook & Bing traces 
– FB: 3500 node Hadoop cluster, 375K jobs, 1 month 

– Bing: 1000’s of nodes Dryad cluster, 200K jobs, 6 weeks 

 

• Prototype in conjunction with HDFS 

• Experiments on 100-node EC2 cluster 
– Cache of 20GB per machine 

 

• Job Bins: Workload divided by number of map 
tasks they contained 
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Improvement in Completion Time 
small jobs: largest 
improvement under LIFE 

Small jobs have lower wave-width 

4/22/2013 14 



Improvement in Cluster Efficiency 
large jobs: largest 
improvement under LFU-F 

Large files are frequently accessed leading to lesser 
eviction under LFU-F 
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System Scalability Results 
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Does not scale well 



Summary 

• All-or-nothing property of parallel jobs 

– Cache all of the inputs of a job 

• PACMan: Coordinated Cache Management 

– Sticky policy: Evict from incomplete inputs 

• LIFE for completion time, LFU-F for utilization 

• Jobs are 53% faster, cluster utilization improves by 
54% 
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Discussion 

• Can Pacman handle graph computation systems 
like Pregel? 

• Estimating wave width is hard for iterative 
computation? 

• Pacman system does not scale that well. 
• Piazza 

– Overhead of central coordinator 
– Experimental evaluation use only Facebook and 

Microsoft data 
– Job Priority not considered 
– Task dependency has not been studied or exploited 
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Comparison w/ State-of-the-Art 
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Resilient Distributed Datasets 
A Fault-Tolerant Abstraction for 
In-Memory Cluster Computing 

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, 
Ankur Dave, Justin Ma, Murphy McCauley, 
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Motivation 
MapReduce greatly simplified “big data” analysis 
on large, unreliable clusters 

But as soon as it got popular, users wanted more: 
»More complex, multi-stage applications 

(e.g. iterative machine learning & graph processing) 

»More interactive ad-hoc queries 

Response: specialized frameworks for some of 
these apps (e.g. Pregel for graph processing) 



Motivation 
Complex apps and interactive queries both need 
one thing that MapReduce lacks: 

Efficient primitives for data sharing 

 

In MapReduce, the only way to share data 
across jobs is stable storage  slow! 



Examples 

iter. 1 iter. 2 .  .  . 

Input 

HDFS 
read 

HDFS 
write 

HDFS 
read 

HDFS 
write 

Input 

query 1 

query 2 

query 3 

result 1 

result 2 

result 3 

.  .  . 

HDFS 
read 

Slow due to replication and disk I/O, 
but necessary for fault tolerance 



iter. 1 iter. 2 .  .  . 

Input 

Goal: In-Memory Data Sharing 

Input 

query 1 

query 2 

query 3 

.  .  . 

one-time 
processing 

10-100× faster than network/disk, but how to get FT? 



Challenge 

How to design a distributed memory abstraction 
that is both fault-tolerant and efficient? 



Challenge 
Existing storage abstractions have interfaces 
based on fine-grained updates to mutable state 

»RAMCloud, databases, distributed mem, Piccolo 

Requires replicating data or logs across nodes 
for fault tolerance 

»Costly for data-intensive apps 
»10-100x slower than memory write 



Solution: Resilient Distributed 
Datasets (RDDs) 

Restricted form of distributed shared memory 
» Immutable, partitioned collections of records 
»Can only be built through coarse-grained 

deterministic transformations (map, filter, join, …) 

Efficient fault recovery using lineage 
»Log one operation to apply to many elements 
»Recompute lost partitions on failure 
»No cost if nothing fails 



Input 

query 1 

query 2 

query 3 

.  .  . 

RDD Recovery 

one-time 
processing 

iter. 1 iter. 2 .  .  . 

Input 



Generality of RDDs 
Despite their restrictions, RDDs can express 
surprisingly many parallel algorithms 

»These naturally apply the same operation to many items 

Unify many current programming models 
»Data flow models: MapReduce, Dryad, SQL, … 
»Specialized models for iterative apps: BSP (Pregel), 

iterative MapReduce (Haloop), bulk incremental, … 

Support new apps that these models don’t 



Memory 
bandwidth 

Network 
bandwidth 

Tradeoff Space 

Granularity 
of Updates 

Write Throughput 

Fine 

Coarse 

Low High 

K-V 
stores, 
databases, 
RAMCloud 

Best for batch 
workloads 

Best for 
transactional 

workloads 

HDFS RDDs 



Spark Programming Interface 

DryadLINQ-like API in the Scala language 

Usable interactively from Scala interpreter 

Provides: 
»Resilient distributed datasets (RDDs) 
»Operations on RDDs: transformations (build new RDDs), 

actions (compute and output results) 
»Control of each RDD’s partitioning (layout across nodes) 

and persistence (storage in RAM, on disk, etc) 



Spark Operations 

Transformations 
(define a new RDD) 

map 
filter 

sample 
groupByKey 
reduceByKey 

sortByKey 

flatMap 
union 
join 

cogroup 
cross 

mapValues 

Actions 
(return a result to 
driver program) 

collect 
reduce 
count 
save 

lookupKey 



Example: Log Mining 
Load error messages from a log into memory, then 
interactively search for various patterns 

lines = spark.textFile(“hdfs://...”) 

errors = lines.filter(_.startsWith(“ERROR”)) 

messages = errors.map(_.split(‘\t’)(2)) 

messages.persist() 

Block 1 

Block 2 

Block 3 

Worker 

Worker 

Worker 

Master 

messages.filter(_.contains(“foo”)).count 

messages.filter(_.contains(“bar”)).count 

tasks 

results 

Msgs. 1 

Msgs. 2 

Msgs. 3 

Base RDD Transformed RDD 

Action 

Result: full-text search of Wikipedia 
in <1 sec (vs 20 sec for on-disk data) 
Result: scaled to 1 TB data in 5-7 sec 

(vs 170 sec for on-disk data) 



RDDs track the graph of transformations that 
built them (their lineage) to rebuild lost data 

E.g.: 

 

 

messages = textFile(...).filter(_.contains(“error”)) 
                        .map(_.split(‘\t’)(2)) 
                         

HadoopRDD 
 

path = hdfs://… 

FilteredRDD 
 

func = _.contains(...) 

MappedRDD 
 

func = _.split(…) 

Fault Recovery 

HadoopRDD FilteredRDD MappedRDD 



Fault Recovery Results 
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Iteration 

Failure happens 



Example: PageRank 

1. Start each page with a rank of 1 

2. On each iteration, update each page’s rank to 

Σi∈neighbors ranki / |neighborsi| 

links = // RDD of (url, neighbors) pairs 
ranks = // RDD of (url, rank) pairs 
 

for (i <- 1 to ITERATIONS) { 
  ranks = links.join(ranks).flatMap { 
    (url, (links, rank)) => 
      links.map(dest => (dest, rank/links.size)) 
  }.reduceByKey(_ + _) 
} 

 



Optimizing Placement 

links & ranks repeatedly joined 

Can co-partition them (e.g. hash 
both on URL) to avoid shuffles 

Can also use app knowledge, 
e.g., hash on DNS name 

links = links.partitionBy( 
         new URLPartitioner()) 

reduce 

Contribs0 

join 

join 

Contribs2 

Ranks0 
(url, rank) 

Links 
(url, neighbors) 

.  .  . 

Ranks2 

reduce 

Ranks1 



PageRank Performance 
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Scalability 
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Behavior with Insufficient RAM 
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Stuff 
 Express many existing parallel models 

 Pregel (200 LOC), Iterative Map Reduce (200 LOC), SQL 
 Apps could efficiently intermix these models 

 Used by 5+ companies, 3+ applications projects at Berkeley 
 Conviva, FourSquare, MobileMillenium 

 Runs on Mesos [NSDI 11] to share clusters w/ Hadoop 

 No changes to Scala language or compiler 
 Reflection + bytecode analysis to correctly ship code 

 Open-sourced at: www.spark-project.org 
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Aftermath 
 Concept of priority for different jobs 

 Which data to kick out? 

 Currently just LRU 

 Do we need to store data back to storage if 

job is too long? When? 

 Spark Streaming [HotCloud ‘12] 

 



Conclusion 

 RDDs offer a simple and efficient 

programming model for a broad range of 

applications 

 Leverage the coarse-grained nature of many 

parallel algorithms for low-overhead recovery 

 Best suited for batch applications 



Backup Slides 



Traditional Streaming Systems 

Fault tolerance via replication or upstream 
backup: 

node 1 

node 3 

node 2 

node 1’ 

node 3’ 

node 2’ 

synchronization 

node 1 

node 3 

node 2 

standb

y 

input 

input 

input 

input 

Fast recovery, but 2x 
hardware cost 

Only need 1 standby, 
but slow to recover 



Discretized Stream Processing 

t = 1: 

t = 2: 

stream 1 stream 2 

batch operation 

pull input 

…
 

…
 

input 

immutable dataset 
(stored reliably) 

immutable 
dataset 

(output or state); 
stored in memory 

without 
replication 

…
 



Related Work 
RAMCloud, Piccolo, GraphLab, parallel DBs 

» Fine-grained writes requiring replication for resilience 

Pregel, iterative MapReduce 
» Specialized models; can’t run arbitrary / ad-hoc queries 

DryadLINQ, FlumeJava 
» Language-integrated “distributed dataset” API, but cannot 

share datasets efficiently across queries 

Nectar [OSDI 10] 
» Automatic expression caching, but over distributed FS 

PacMan [NSDI 12] 
» Memory cache for HDFS, but writes still go to network/disk 


