UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

Spreading the Rumor

Mainak Ghosh and Mayur Sadavarte

illinois.edu

Courtesy: http://dilbert.com/strips/comic/1989-11-12/

Sounds Familiar

Infective

Slide Borrowed from Indy's Introduction Presentation

It's Not Rumored

- Clearinghouse and Bayou projects: email and database transactions [PODC '87]
- refDBMS system [Usenix '94]
- Bimodal Multicast [ACM TOCS '99]
- Sensor networks [Li Li et al, Infocom '02, and PBBF, ICDCS '05]
- Usenet NNTP (Network News Transport Protocol)! ['79]

Slide Borrowed from Indy's Introduction Presentation

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

Alan Demers et al, PODC 1987 Presenter: Mainak Ghosh

Consistency

- Replicated Data = Consistency Issues
- System Model: Underlying communication system unreliable
- Goal: Replicas should be eventually consistent.
- Solution: Randomized Algorithms inspired from Epidemics

"Consistency is the hallmark of the unimaginative."
- Oscar Wilde

Direct Mail

Cons??

Overhead??

Anti Entropy (Push)

 p_i - Probability that a node is susceptible after i_{th} round n – number of sites

$$p_{i+1} = p_i (1 - \frac{1}{n})^{n(1-p_i)}$$

Converges slowly to zero for small p_i and large n

Anti Entropy (Pull)

 p_i - Probability that a node is susceptible after i_{th} round

$$p_{i+1} = (p_i)^2$$

Converges rapidly to zero for small p_i

Anti Entropy (Optimizations)

- Maintain checksum, compare databases if checksums unequal
- Maintain recent update lists for time *T*, exchange lists first
- Maintain inverted index of database by timestamp; exchange information in reverse timestamp order, incrementally re-compute checksums

Stale Gossip

- List of infective updates maintained at sites
- Complexity involved in choosing when to remove from the list

Epidemic Variants

Blind vs. Feedback

- Blind: lose interest to gossip with probability 1/k every time you gossip
- Feedback: Loss of interest with probability 1/k only when recipient already knows the rumor

Counter vs. Coin

- Coin: above variants
- Counter: Lose interest completely after k
 unnecessary contacts. Can be combined with blind.
- Push vs. Pull

Performance Metrics

- Residue: Fraction of susceptible left when epidemic finishes
- Traffic: (Total update traffic) / (No. of sites)
- Delay: Average time for receiving update and maximum time for receiving update

Performance Evaluation

Table 1. Performance of an epidemic on 1000 sites using response and counters.

Counter	Residue	Traffic	Convergence	
\boldsymbol{k}	5	m	turu	tlast
1	0.176	1.74	11.0	16.8
2	0.037	3.30	12.1	16.9
3	0.011	4.53	12.5	17.4
4	0.0036	5.64	12.7	17.5
5	0.0012	6.68	12.8	17.7

Table 2. Performance of an epidemic on 1000 sites using blind and probabilistic.

Counter	Residue	Traffic	Convergence	
<i>k</i>	8	m	ture	tions :
1	0.960	0.04	19	38
2	0.205	1.59	17	33
3	0.060	2.82	15	32
4	0.021	3.91	14.1	32
5	0.008	4.95	13.8	32

Death Certificate

- Deleted items may get resurrected!
- Use of death certificates (DCs) when a node receives a DC, old copy of data is deleted
- How long to maintain a DC?
 - Typically twice (or some multiple of) the time to spread the information
 - Alternately, use Chandy and Lamport snapshot algorithm to ensure all nodes have received
 - Certain sites maintain dormant DCs for a longer duration;
 re-awakened if item seen again

Spatial Distributions

- Cost of communication is not uniform across all sites
- Sites choose nearby neighbors to run their protocol
- Results:
 - Critical Links get less traffic
 - Protocol converge with little change in total generated traffic

Discussion

- Anti Entropy Optimization Strategies
- Death Certificate Removal
- Gossips in OSNs, other areas...

Exploring the Energy-Latency Trade-Off for Broadcasts in Energy-Saving Sensor Networks

- Author(s): Miller, Matthew J.; Sengul, Cigdem; Gupta, Indranil (Dept. of Comput. Sci., Illinois Univ., Urbana-Champaign, IL)
- 25th IEEE International Conference on Distributed Computing Systems.
- Identifier: <u>10.1109/ICDCS.2005.35</u>
- Publication Year: 2005
- Presenter: Mayur Sadavarte

Sensor Networks

Active-Sleep Cycle Approach

Trinity to Optimize

Energy

Latency

Reliability

Probability Based Approach

Site Percolation

Bond Percolation

Percolation Theory Result

PBBF

Distinguishing Points –

- Bond percolation probability model
 - Gossip-based routing protocol proposed by Z. J. Haas, J. Y. Halpern, and L. Li in <u>Gossip-Based Ad Hoc Routing</u>, is based on 'site-percolation model'
- Operates in close proximity with MAC layer protocol
- Range of operating points, based on energylatency tradeoff for different levels of reliability, from which an application designer can choose.

Trade-Off Knobs

• p: probability that node rebroadcasts a packet though not all the neighbors are guaranteed to be awake to receive the packet

 q: probability that node keeps its radio on even after the active time, when it is actually supposed to sleep.

'p' & 'q'

- p presents trade-off between latency and reliability
 - As p increases, latency decreases while the fraction of nodes not receiving a broadcast increases (unless q = 1)
- q presents trade-off between energy and reliability
 - As q increases, energy consumption increases, but the fraction of nodes receiving a broadcast increases (unless p = 0)

p_{edge}

 'mean' of a Bernoulli Random Variable which governs a state for individual edge in the graph G

• p_{edge} - 'pq + (1-p)'

Critical Probability $(P_c^{bond}(G))$

Consider G(V, E) to be an infinite connected graph, and n_0 to be source of Gossip.

$$C_0 = \{ x \in V : n_0 \leftrightarrow x \}.$$

We want C_0 to be infinite!!

$$p_c^{bond}(G) = \sup\{p_{edge} : \theta^{bond}(p_{edge}) = 0\}.$$

Reliability (most important) Fraction of Updates Recieved By 99% Nodes Fraction of Updates Recieved By 90% Nodes 8.0 8.0 0.6 0.6 0.4 0.4 PBBF-0.05 0.2 0.2 PSM PBBF-0.05 0 0.2 0.4 0.6 8.0 0.6 8.0 0.4 Threshold behavior for 99% Threshold behavior for 90% reliability. reliability. 80% Reliability 0.8 90% Reliability 99% Reliability 100% Reliability 0.6 Threshold 0.5 Behavior 0.4 0.3 0.2 0.1 0.2 0.4 0.6 0.8 p

Relationship between p and q for a given reliability level in a 30×30 grid network.

Energy (effect of 'q')

'p' doesn't affect energy consumption

$$E_{PBBF} = \frac{T_{active} + q \cdot T_{sleep}}{T_{frame}}$$

Average energy consumption.

$$\frac{E_{PBBF}}{E_{original}} = \frac{T_{active} + q \cdot T_{sleep}}{T_{active}} = 1 + q \cdot \frac{T_{sleep}}{T_{active}}$$

Latency

- L1: time required to actually transmit and receive the packet
 - Depends upon the MAC protocol
- L2: time required to wake up all neighbors for broadcast
 - Depends upon the sleep-scheduling mechanism

$$L = \frac{L_1 \cdot p \cdot q + (L_1 + L_2) \cdot (1 - p)}{p \cdot q + (1 - p)}$$
$$= L_1 + L_2 \cdot \frac{1 - p}{1 - p + p \cdot q}$$

Number of 60-Hop Nodes in Grid = 60

Shortest Path gets hindered due to probabilistic edges

hops from the source.

Energy – Latency Trade-off

Energy-latency trade-off for 99% reliability.

Simulation Setup

- IEEE 802.11 PSM MAC using ns-2 simulator
- With collisions and interference
- Code distribution in sensor network application
- Perfect sync across the whole sensor n/w is assumed

```
• N: 50
```

•
$$\Delta$$
: $(\Pi R^2)*N/A$

• λ : broadcast rate – 0.01 packets/s

• T_{frame} : 10 s

• T_{active}: 1 s

Impact of 'q'

Average energy consumption.

2-hop average update latency.

Impact of ' Δ '

Discussions

- Why the simulation graphs don't contain readings for p = 0.75 and in some, for p = 0.5?
- Can PBBF be adapted for unicast protocols?
- Can p and q be decided dynamically for optimization instead of developer setting it?
 - Adaptive probability-based broadcast forwarding in energy-saving sensor networks, Journal, ACM Transactions on Sensor Networks (TOSN), Volume 4 Issue 2, March 2008, Article No. 6
- Can this mechanism be extended to take advantage of the knowledge of power available at a node or the nodes view of its neighbors?
- Experiments only cover grid-network topology
- Individual nodes in the network cannot currently be configured to have different p and q values