-

Programming
the CIOUd

Babak Behzad
Faraz Faghri

http://www.undertheradarblog.com/wp-content/uploads/2011/12/Top-5-Best-Free-Cloud-Storage-Services-That-You-Need-And-Are-Useful.png

Everybody fancies:
- data analysis

- log processing

- machine learning

- Spam detection

But ...

- unstructured data

- complex infrastructure

- MapReduce coding is time-consuming
- and long

Pruase] PHaseZ2 PHased

Lu”t'lﬂ 9 Profig
I []

Big Data

Data analyst asks ...

- what are the top 5 most visited pages by users aged 18-257?

=<ai, a2, ...an> A’=map(A)

A
% group by A' ey

Lot
o

Joinon name
SRR
Coutaioks
T
RS

MapReduce solution .

N . Crmd e = hww PR R e
Lk AvseapLimlcnlos bty Ama ks b . o ER=h .
G e A r kg Lo s € RG W ALY y woga ‘- .
1 whi 3 - .
whitde 1d) wia 3 wi
toaa ! wis £ u e "l
Lk EE gl R =LA WALy
e - @y Anpie i ela Y 7 i
ELamt Lwalum

Desired solution ...

- Desirable to have a higher level declarative language that describes the
parallel data processing model.

- SQLish query where the user specifies the "what" and leaves the "how" to
the underlying processing engine.

Phase ONE

Pig and Hive: 2 ways of doing 1 thing ...

- Both generate Map-Reduce jobs from a query written in a higher

level language.
- User doesn't need to deal with Hadoop complexity.

- Lives on client machine, nothing to install on cluster.

Map Reduce Job:

users load 'users'; Input: ./users
- o i et ot (s Map: project(zipcode, userid) —~
1 Shuffle key: zipcode @hadmmp

= foreach grouped
COUNT (users) ;
Reduce: count

byzip
generate zipcode,
Output: ./count by zip

nn

store byzip into 'count_ by zip';

Pig and Hive example ...

HVE

Procedural data-flow language Declarative SQLish language
Count - mytable = GROUP mytable ALL; - SELb'IECT COLINIC) ARoly
table;
- mytable = FOREACH mytable GENERATE COUNT kb
(mytable);
- DUMP mytable;
Count - mytable_col1 = GROUP mytable BY col1; E gg‘;\fCT CSUNT(D'ST'NCT col1)
icti - mytable;
R'St'ECt - mytable_col1_count= FOREACH mytable_col1 { .
umber col_2 = DISTINCT mytable.col_2;
GENERATE group, COUNT(col_2);
2
- DUMP mytable_col1_count;
Join - mytable = JOIN mytable BY col1, othertable BY col1: - SELECT * FROM mytable INNER
_ JOIN othertable ON mytable.col1 =
- DUMP mytable; othertable.col1;

Let's analyze tweets ...

Control Flow of the Oozie
Data Pipeline
Add
Partitions
Hourly

Sink to . JSON SerDe
HDFS Parses Data
Flume HDFS Hive

- Twitter Streaming API outputs tweets in a JSON format

- Flume: distributed service for efficiently collecting, aggregating, and moving large

amounts of log data.
- Hive provides a query interface which can be used to query data that resides in

HDFS.

- SerDe stands for Serializer and Deserializer, which are interfaces that tell Hive
how it should translate the data into something that Hive can process.

- Apache Oozie is a workflow coordination system, an extremely flexible system
for designing job workflows, which can be scheduled to run based on a set of

criteria.

https://dev.twitter.com/docs/streaming-apis
https://dev.twitter.com/docs/platform-objects/tweets
http://www.json.org/
http://incubator.apache.org/oozie/docs/3.2.0-incubating/docs/WorkflowFunctionalSpec.html
http://incubator.apache.org/oozie/docs/3.2.0-incubating/docs/CoordinatorFunctionalSpec.html

pig.jar:
*parses
*checks
soptimizes
*plans execution
*submits jar
to Hadoop
*monitors job progress

|

W,

Pig Latin

A = LOAD ‘filel” AS (x, v, 2);

B = LOAD ‘file2’ AS (t, u, v);

C=FILTERAbyy>0;

D =JOIN CBY x, B BY u;

E = GROUP D BY z;

F = FOREACH E GENERATE
group, COUNT(D);

STORE F INTO ‘output’;

Logical Plan

FILTER | (x, v, 2

JOIN | (x

GROUP |

FOREACH

i

SToRe|

' LOAD |

(t, u,v)

Y.t uv)

(group, {(x, v, 2, t, u, v)})

(group, count)

(group, count)

- Tables: Each table has a corresponding directory on HDFS.
- Partitions: distribution of data within sub-directories of a table directory.
- Buckets: files in partition dir, based on the hash of a column in the table.

#Buckets=32
_» Schema Bucketing Info
Partitioning Cols

~*Library

.\“‘* Hash N | clicks~]

Partitioning

\\
L)

Logical Partitioning

/ hive/clicks
/hive/clicks/ds=2008-03-25 Tables
/hive/clicks/ds=2008-03-25/0

HDFS | MetaStore

- Apache Thrift software framework, for scalable cross-language services

development

- DDL:Hive Data Definition Language: create table, show, alter ...

Mgmt. Web Ul

O

Map Reduce
| Hive CLI
Browsing Queries DDL
i Thrift APl | | Parser |
\ | Execution |
4 | Planner | f
Hive|QL
Se"rDe

MetaStore

|Thrift Jute JSON..

HDFS

User Defined Function ...

- way to do an operation on a field or fields

- called from within a pig script
- b = FOREACH a GENERATE foo(color)

- Implementation: just think about a small problem
- Many collaborators: Linkedin DataFU, Twitter Elephant-bird, etc.

Performance ...

Twitter : Typically a Pig script is 5% of the code of native MapReduce written in
about 5% of the time. However, queries typically take between 110-150% the
time to execute that a native MapReduce job would have taken.

Hortonworks benchmark:

TPC-H 100GB on 8-slave Cluster

20000
18000 -
16000 -
guooo '
@ 12000
£ 10000 -
8000
6000
4000
2000

¥ Hive

uPig

Q9 R ———

Q10 I

Q11 &

Running
o

Ql
Q2 e
03 .
Q4 B
Qs EEE
Q6 B
Q7 I
Q8 .

Q12 e

Q13 &

Q14 e

Q15 e

Q17 |

Q18 I

Qe

Q20 e

Q21 EEE—
Q2 =

Qe W

http://blog.tonybain.com/tony_bain/2009/11/analytics-at-twitter.html

Final word ...

- Not a database, read-only operations.
- Load data you tell how the data is organized, deserialize the data.

- They work with Hadoop and HDFS.

Piazza
- Reliability
- Popularity

MegaPipe: A New
Programming Interface
for Scalable Network I/O

OSDI'12

- Imagine a typical Web 2.0 data-center (e.g. facebook, Twitter,
Wikipedia, Youtube, etc.)

- web applications access the database to retrieve and update user
data

- However, the database can become a bottleneck.

- ... SO a cache is used to store the results of
database queries.

- cache itself must be highly scalable

—
didn't find / on cache :(

Here is the response ;)

GET /

P

I
Tomcat
- Memcache_d is an _e.xample of a scale-out ngmx\ ERIE ST
system: adding additional servers to a Is / on cache?
Memcached cluster linearly increases the Chent browser \
capacity of the cache.

memcached

Early Motivation

function get_fool(int userid) {

data = db_select("SELECT * FROM users WHERE userid = ?", userid);
return data;

Memcached:

e provides a giant distributed hash table.
e When the table is full: LRU order.

e Applications
o first check memcached (RAM)
o then fetch from slower backing store (DB, Disk)

function get_foo(int userid) {

/* first trv the cache */

data = memcached_fetch("userrow:" + userid);
T trdatar «

/* not found : request database */

data = db_select("SELECT * FROM users WHERE userid = 7", userid);
/* then store in cache until next get */
memcached add("userrow:" + userid, data);

=

J
return data;

Early Motivation

‘ Scaling memcached at Facebook
by Paul Saab on Friday, December 12, 2008 at 2:43pm * @&

If you've read anything about scaling large websites, you've probably heard about
memcached. memcached is a high-performance, distributed memory object caching system.
Here at Facebook, we're likely the world's largest user of memcached. We use memcached
to alleviate database load. memcached is already fast, but we need it to be faster and more
efficient than most installations. We use more than 800 servers supplying over 28 terabytes

1. Per-connection buffer to read, write data: a lot of memory => a per
thread shared connection buffer pool

2. Considerable lock contention over UDP socket locks => one reply
socket per thread

3. One core get saturated, doing network interrupt handling => distribute
network processing evenly across cores.

4. Their machines: 8-core. A big contention on the lock that protects each
network device's transmit queue => better algorithm with less locking

Motivation

1. Bulk-transfer workload

o One way, large data transfer
m Video streaming, HDFS
o Cheap

2. Message-oriented workload

o Short connections or small messages
m HTTP, RPC, DB, key-value stores, ...
o CPU-intensive

Existing network API on multi-core systems

o Inefficient for "message-oriented” workloads
o Hard time to scale to high connection rate

EThroughput THCPU Usage
L
a - 80
a
e
= - 60
Rt
=
=
S04 - 40
£
s 2 - - 20
0 u -0
64 128 256 512 1K |[2K 4K 8K | 16K
Low throughput Message Size (B) Hjgh overhead

Low throughput of small
messages

Throughput (1M transactions/s)

1.5 7

1.2 1

0.9 1

0.6 1

0.3

CPU Usage (%)

Not efficient use of multi-
cores

L 4
. o
Ideal scaling _”

Actual scaling
—F

4
of CPU Cores

5

e Networking: Central role in modern
applications

e MegaPipe: A new API for efficient, scalable
network I/O.Especially I/O intensive
workloads

e More on Operating System, not Distributed
Systems

e T[he core abstraction: a channel
o a per-core, bi-directional pipe between the kernel and

Listening
socket
partitioning

Lightweight
socket

File abstraction Shared
overhead (VFS listening
overhead) socket

n_events = epoll wait(...): // wait for I/0 readiness

for (Vo) A
@l@) // new connections

t')).".ces @ d®, buf, 4096); // new data for fd2

System call

System call
overhead

batching

Architectural Overview

e MegaPipe involves both user-space library and Linux
kernel modifications.

Application thread
MegaPipe user-level library
% Batched Batchgd
completion
5 asyne 1O events
N o commands
S R s
. Channel instance Pending
lwsocket File completion
handles handles events
| s T
TCP/IP

Figure 2: MegaPipe architecture

Listening Socket Partitioning

e \When an application thread associates a
listening socket to a channel, MegaPipe
spawns a separate listening socket.

Core 1 Core 2 Core 3 Core 1 Core 2 Core 3
NN EEEN NERE =TT EEEN EEEN

Nz

‘t‘ ! ‘ ‘1‘
’ ‘ Listening
t - W @ socket
™, J U e
partitioning

New connections New connections

Iwsocket: Lightweight Socket

VES

In UNIX, many different types of open files:

o disk files, sockets, pipes, devices

This is an overkill for network sockets:

o Sockets are rarely shared
o Sockets are ephemeral

Lwsocket: Do not create a file instance

Core 1 Core 2 Core 3
Core 1 Core 2 Core 3

JUEE SEEE EEEE WEOUE WEES SEEw

IRINIR.. SN

UL HEEE BEEE g lghtweight
socket
EeN U § g U U VES

System Call Batching

e System calls:
o Cost of mode switching => Expensive
o Negative effect on cache locality => Inefficient

® To amortize system call costs, MegaPipe:
o Batches multiple 1/0O requests and their completion
notifications into a single system call.

Kernel

O\

|

99&2 ‘ I/O Batching

Handles == [[0])

Channe| ==y

User

API

Function Parameters | Description

mp_create () Create a new MegaPipe channel instance.

mp_register() channel, Create a MegaPipe handle for the specified file descriptor (either regular or lightweight) in the given
fd, cookie, | channel. If a given file descriptor is a listening socket, an optional CPU mask parameter can be used
cpu_mask to designate the set of CPU cores which will respond to incoming connections for that handle.

mp_unregister() | handle Remove the target handle from the channel. All pending completion notifications for the handle are

canceled.

mp_accept () handle, Accept one or more new connections from a given listening handle asynchronously. The application
count, specifies whether to accept a connection as a regular socket or a lwsocket. The completion event will
1s_lwsocket report a new FD/lwsocket and the number of pending connections in the accept queue.

mp_read () handle, buf, | Issue an asynchronous I/O request. The completion event will report the number of bytes actually

mp_write() size read/written.

mp_disconnect() | handle Close a connection in a similar way with shutdown (). It does not deallocate or unregister the handle.

mp_dispatch() channel, Retrieve a single completion notification for the given channel. If there is no pending notification event,
timeout the call blocks until the specified timer expires.

Table 1: MegaPipe API functions (not exhaustive).

Ping-pong server pseudocode

cres
andle ch, listen_sd , mask=0x01)
mp_acceptiandle

while truc
ev =(mp_dispatch
conn =2 G e

if —ev.cmd ACCEPT:
mp_accept(fonn. handle)
conn = new Connection ()

conn. handle = mp_register(ch, ev.fd,
cookie=conn)

mp_read(conn.handle , conn.buf, READSIZE)
elif ev.cmd == READ:

mp_write (conn . handle , conn.buf, ev.size)
elif ev.cmd == WRITE:

mp_read(conn.handle , conn.buf, READSIZE)
e LiHf—ev . cm PDISCONNECT :
mp_unregister(gh, conn.handle)

a1 e
W -+

ch)

Listing 1: Pseudocode for ping-pong server event loop

Microbenchmarks: Performance

How many applications?

S
= 100 A
5
5 80 -
-
o
2. i
E 60
2 40 -
-
=
o -
£ 20
=
O T T ' T ' T ' T ' T T ' 1
1 2 3 4 5 6 7 8
of CPU Cores

Figure 4: Relative performance improvement for varying mes-
sage sizes over a range of CPU cores.

Microbenchmarks: Multi-core scalability

(a) Baseline (b) MegaPipe
S 128 7 7

Parallel Speedup

| 2 3 4 5 6 7 8
Number of CPU cores

Figure 3: Comparison of parallel speedup for varying numbers
of transactions per connection (labeled) over a range of CPU
cores (x-axis) with 64 B messages.

Macrobenchmarks: memchached

1050 7 - 350
g 900 -
S 750 -
g
~ 600 -
5 450 -
£
%0 300 A .u"
é 150 . 1. et ’_l_’ - 50
o WL il dl 1 0.0 .0 nf,
1 2 4 8 16 32 64 128 256 0
Number of Requests per Connection
—0O— MegaPipe —>— MegaPipe-FL U Improvement

+0-- Baseline =% Baseline-FL U Improv.-FL

Figure 5: memcached throughput comparison with eight cores,
by varying the number of requests per connection. oo indicates
persistent connections. Lines with "X" markers (-FL) represent
fine-grained-lock-only versions.

MacroBenchmarks: nginx

3.6 - - 100 20 - - 100 20 - 100
o 3 - =O=MegaPipe I | i . B Improvement | | _
g 24 "'A"BaSClinc 80 16 80 16 6/0 80 f\:
- = 60 12 1 - 60 12 d - 60 5
5 A0 =
e 1.8 5
&) - 40 8 - 40 8 - A a0 3
3 12 4 | =
E . =
=06 |47 - 20 4 13 |_| - 20 4 - L 5p =

0 T T T T T T T 0 0 T T T T T T T |_I 0 0 T T 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of CPU Cores # of CPU Cores # of CPU Cores

Figure 7: Evaluation of nginx throughput for the (a) SpecWeb, (b) Yahoo, and (c) Yahoo/2 workloads.

Conclusion

e Short connections or small messages:

o High CPUoverhead
o Poorly scaling with multi-core CPUs

e MegaPipe
o Key abstraction: per--core channel
o Enabling three optimization opportunities:
m Batching, partitioning, Iwsocket

Thoughts/criticism

e Multi-core Era!

e Legacy Code: The main question is, are
people willing to change their code to this
new API|?

e Evaluation? Why not more real-world
applications?

Discussion Points

® From Piazza:

Compared to HW solutions (infiniband)
Delay of batching?

Will it be as great as it is right now for VMs?
All the APl is asynchronous!

o "applications should control sharing"

® More?
o Let's discuss here in the class...

O O O o

Backup Slides

Implementation

e MegaPipe consists of two parts:
o Kernel Module: MP-K
o User-level Library: MP-L
o Interaction: Through a special device: /dev/imegapipe
e MP-K
o Maintains set of handles for both FDs and lwsockets in a
red-black tree for each channel.
o Depending on the file type, it handles async I/O.
e Upon receiving batched I/O commands from MP-L through a
channel, MP-K checks if they can be processed immediately.
o If yes, process it and issue a completion notification
o If no, bookkeep, register a callback to the socket or
declare epoll interest for other file types.

