The CAP Theorem
Discussion

Presenters: Cuong Pham & Biplap Deka
CS525 Spring 2013




CAP Theorem

Atomic/Linearizable

Consistency Avallablllty
Exist a total order of all Every request received by
Operations such that each a non-failing node must
operation looks as if it result in a response

were completed at a single instant

Brewer: Pick Two!

Partition-tolerance

No set of failures less than total network failure
Is allowed to cause the system to response incorrectly
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Historical Context

2000 T E.Brewer stated CAP trade-offs in his keynote talk at PODC
2002 — S.Gilbert & N. Lynch published a formal proof of CAP
2009 —+ NoSQL movement began
2012 -+ S. Gilbert and N. Lynch:“Perspective on the CAP theorem”

E. Brewer:“CAP Twelve Years Later: How the “Rules” Have Changed”
Today —+ 50 NoSQL Databases (nosql-database.org)
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CAP, Cloud Computing, and NoSQL
in Google Trends

I CAP theorem

I NoSQL

I Cloud Computii




Proof Sketch
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Consistency is Important

Affect the correctness of data
People are used to its strong notion in pre-cloud era

The ONLY knob you can tune in CAP in many scenarios

RedBlue Consistency

C. Lj, el at.,“Making geo-replicated systems fast as possible, consistent when
necessary, In OSDI, Oct 2012.

Causal+ Consistency

W. Lloyd, el at., "Don't settle for eventual: scalable causal consistency for
wide-area storage with COPS," In SOSP 201 I.
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CAP Theorem Debate

With the wide geographical spread of the cloud, opportunities for
partitioning in the data are not in-significant

An justification for NoSQL Movement
Latency is not in the equation (e.g. PNUT)
A and C are asymmetric
Differences between CA and CP?

Cuong Pham & Biplab Deka - CS525 Sp13



Making Geo-Replicated Systems
Fast as Possible,
Consistent when Necessary

Authors: Chen Li, Daniel Porto, Allen Clement, Johannes Gehrke,
Nuno Preguica, Rodrigo Rodrigues

Presenter: Cuong Pham



Motivation

» Geo-replication
Internet users are globally distributed

Applications replicate data across datacenters
Reduce network latencies to users

Dilemma:
Cross-site consistency latency
The problems are magnified with WAN latency

E.g.: Synchronous replication via Paxos.

» Observation:

Strong consistency is not always required: Depend on the applications

» Goal:

RedBlue Consistency: Mixing strong consistency (for application
semantics) & eventual consistency (for fast responses) in a same system
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Divide Operations into Red and Blue

Alice in EU Bob in US

A a ) A b
...... R

| 2 * bg

Aaz -0 .

‘ v

v A b

* I

....... .

* by,

RedBlue Order:

Alice in EU

- Red operations must be totally ordered

- The order of Blue operations can vary from site to site
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RedBlue Consistency

Alice in EU Bob in US
» Causal serialization So So
. . o . A al A bl
A site has a causal serialization of s, S
the RedBlue order if the A by A a
ordering is a linear extension of gz Sz’
b
the RedBlue order * 2 * %
Ss S5’
» State Convergence A a A b;
v v
Convergent if all causal B4 Sd
T * a3 A a
serializations of the RedBlue S' o
5 53
order reach the same state A by * a
All blue operations must be globally S Ss'
commutative * b X b
S7 S7'

RedBlue Consistency: Each site applies operations according
to the causal serialization of the RedBlue order
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RedBlue Consistent Banking System

Alice in EU Bob in US

A\ deposit(20) A\ accrueinterest()

(a) RedBlue order O of operations issued by Alice and Bob

Problem:

* Different execution orders
lead to divergent state

Cause:

* Accrueinterest() doesn’t
commute with deposit()
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deposit (float money) {
balance = balance + money;

}

withdraw (float money) {
if ( balance - money >= 0 )
balance = balance — money;
else
print "failure";

accrueinterest () {

float delta = balance x
interest;

balance = balance + delta;
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Operation Decomposition
Generator & Shadow operations

Observation: Not all operations are commutative
Split these operations into generator and shadow operations

Generator Operations

Only executed at the primary site against a system state
Produces no side effects
Determines state transitions that would occur

Produces shadow operations

Shadow Operations
Applies the state transitions to all the sites including the primary site

Must produce the same effects as the original operation given the original
state for the Generator operation

Separating operations allows for easier formation of abelian groups

Allows for more commutative operations (blue operations)
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Revisit the Banking System

Original/Generator operation

Shadow operation
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deposit(float m){ deposit’(float m){
produces
balance = balance + m; % balance = balance + m;
} }
accrueinterest(){ _ ’
float delta=balance x interest; produces | accrueinterest’(float delta){
balance=balance + delta; 3 balance=balance + delta;
} }
uces | . .
withdraw(float m){ pr od withdrawAck’(float m)
if(balance-m>=0) L — { balance=balance - m;
balance=balance - m; }
else — Produces
p”-nt ”Error” %}W.Eh.d.LaﬂEalLo{
}




Converged... but Invalid

Alice in EU Bob in US
A deposit’(20) A accrueinterest’(5)
v ‘ . . - - - - . .A v
A withdrawAck’(70) A\ withdrawAck’(60)
(a) RedBlue order O of banking shadow operations
Alice in EU Bob in US
balance:125 withdraw(70) balance:125 withdraw(60)
A withdrawAck’(70) A withdrawAck’(60)
v v
balan_ce:55 balance:65
JAN withdrau;Ack ’(60) A\ withdrawAck’(70)

v
balance:-5 x balance:-5 x

(b) Invalid but convergent causal serializations of O
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Red or Blue?

Ensuring state
convergence

No

/ a shadow /
operation u

commutes

Ensuring invariant
preservation

with all
others?

breaks
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No

Credit: Authors’ slides
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Correct RedBlue Consistent Banking

Alice in EU
A deposit’(20)

Bob in US
A accrueinterest’(5)

A , v
Y withdrawAck’(60)

A withdra;'Fail’( ) 4 :
v A despc{it’(l 0)
* withdrawAck’(40) - - . :
T * withdrawAck’(30)
(a) RedBlue order O of banking shadow operations
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Alice in EU Bob in US

balance:100 <:deposit(20) balance:100 %_ accrueinterest()
A deposét’(20) A accruein:terest’(S)

balance:120 balance:105
A accruein;terest (5) FAN deposzt ’(20)

balance:125 balance:125 withdraw(60)
* withdrawAck’(60) * withdrawAck’(60)

balan'ce:65 Qithdmw( 70) balan:ce:65 <:deposil(10)

A withdraivFail 0 A deposit’(10)
v

balance:65 Qithdmw(w) balance:75
A depos:'t’(l 0) A withdra:vF ail’()

balance:75 balance:75
* wizhdraw;A ck’(40) * wi:hdmw;A ck’(40)

balance:35 balance:35 withdraw(30)
* withdrauiAck ’(30) * withdrau:Ack ’(30)

balance:5 balar':ce:S

(b) Convergent and invariant preserving causal serializations of O



Summary

RedBlue consistency combines strong and
eventual consistency into a single system

The decompositon of generator/shadow
operations expands the space of possible Blue
operations

A simple rule for labeling is provably
state convergent and invariant preserving
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Evaluations
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» Deployment in Amazon EC2

Experimental Setup

spanning 5 sites (US-East, US-West, Ireland, Brazil, Singapore)

» Locating users in all five sites and directing their requests to closest

server

UE Uw IE BR SG
UE 0.4 ms 85 ms 92 ms 150 ms 252 ms
994 Mbps 164 Mbps 242 Mbps 53 Mbps 86 Mbps
UwW 0.3 ms 155 ms 207 ms 181 ms
975 Mbps 84 Mbps 35 Mbps 126 Mbps
E 0.4 ms 235 ms 350 ms
996 Mbps 54 Mbps 52 Mbps
BR 0.3 ms 380 ms
993 Mbps | 65 Mbps
0.3 ms
SG 993 Mbps

Table 3: Average round trip latency and bandwidth be-
tween Amazon sites.
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Micro-benchmark Results

Avoid the cost of cross-site communication as much as possible
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(c) Blue latency CDF for Singapore users as number of sites increases (d) Red latency CDF for Singapore users as number of sites increases

Figure 8: (a) and (b) show the average latency and standard deviation for blue and red requests issued by users in
different locales as the number of sites is increased, respectively. (c) and (d) show the CDF of latencies for blue and
red requests issued by users in Singapore as the number of sites is increased, respectively.
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Case Studies

» Applications
» Two e-commerce benchmarks: TPC-WV, RUBIS
» One social networking app: Quoddy

» How common Blue operations are!?

Original RedBlue consistent extension
Application user transactions LOC shadow operations LOC
requests | total | read-only | update blue no-op | blue update | red | LOC | changed
TPC-W 14 20 13 7 Ok 13 14 2 | 28k 429
RUBIiS 26 16 11 5 9.4k 11 7 2 1k 180
Quoddy 13 15 11 - 15.5k 11 . 0 495 251
Table 2: Original applications and the changes needed to make them RedBlue consistent.
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How common Blue operations are?

» Runtime Blue/Red ratio in different applications with different
workloads:

Originally With shadow ops
Apps workload
Blue (%) Red(%) Blue (%) Red(%)
Browsing mix 96.0 4.0 99.5 0.5
TPC-W Shopping mix 85.0 15.0 99.2 0.8
Ordering mix 63.0 37.0 93.6 6.4
RUBIS Bidding mix 85.0 15.0 97.4 2.6
Quoddy | a mix with 15% update 85.0 15.0 100 0
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Scalability Evaluation
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Figure 10: Average latency for selected TPC-W and RUBIS user interactions. Shadow operations for doCart and
StoreBid are always blue; for doBuyConfirm and StoreBuyNow they are red 98% and 99% of the time respectively.
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Discussion

Total order in one site: Red operations block Blue operations!?

Operation decomposition:

A manual process (how to automate?)

Error-prone
Compare with Cassandra’s three consistent levels (One, Quorum,
and All)

How improvements in network technology (e.g. cross-site latency is
a few ms) impact future designs of geo-rep. system!?

The idea of RedBlue operation is similar to:
Generalized Paxos
Generic Broadcast

Gemini implementation
No Fault-tolerance
Bottleneck: serialize Red operations via token passing
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Don’t Settle for Eventual: Scalable Causal

Consistency for Wide-Area Storage with

COPS

Whyatt Lloyd™, Michael J. Freedman”, Michael Kaminsky’,
David G. Andersen?

*Princeton, TIntel Labs, *CMU

SOSP 2011

CS525 Presenter : Biplab Deka

Disclaimer: Several slides are borrowed from the presentation by the first author at SOSP 2011



Wide-Area Storage

Serves Requests Quickly
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Desired Properties: ALPS

Availability )

— All operations to the datastore complete

Low Latency >

— Client operations complete quickly /

Partition Tolerance

— The datastore continues to work under network partitions

Scalability

— The datastore scales out linearly

“Always

Onll



Consistency with ALPS

> Causal > FIFO

Linearizability > Sequential > Causal+ > Per-Key Sequential > Eventual

Strong: Impossible [Brewer00, GilbertLynch02]

Sequential : Impossible [LiptonSandberg88, AttiyaWelch94]

Causal+ : Causal + Convergent Conflict Handling
COPS

Eventual : Dynamo, Cassandra
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Rules for Potential Causality

1. Execution Thread. If a and b are two operations in a single
thread of execution, then a ~» b if operation a happens before
operation b.

2. Gets From. If a is a put operation and b is a get operation
that returns the value written by a, then a ~» b.

3. Transitivity. For operations a, b, and ¢, if a~» b and b~ c,
thena~ c.

Client1 put(x,1) — put(y,2) — put(x,3)

Client 2 get(y)=2 — put(x,4)
Client 3 get(x)=4 — put(z,5)
TiME@ ===sceecceccccccccccccc e e e >

Figure 2: Graph showing the causal relationship between oper-
ations at a replica. An edge from a to b indicates that a ~» b, or
b depends on a.

The value returned by a get operation has to be consistent with the order defined
by these rules.

It must appear that the operation that writes a value occurs after all operations
that causally precede it
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Conflicts in Causal




Conflicts in Causal
Causal + Conflict Handling = Causal+

K: 3




Previous Causal+ Systems

* Bayou ‘94, TACT ‘00, PRACTI ‘06
— Limited Scalability
— All data should fit on same machine (Bayou)

— Data that could be accessed together should be
on same machine (PRACTI)

— Log-exchange based



COPS

 Dependency metadata explicitly captures
causality

e Versions

— Different values of a key
— Each replica returns non decreasing versions of a key

* Dependencies
— y; depends on x; if and only if put(x;) -> put (y;)
— Provide causal+ consistency by writing a version only
after writing all of its dependencies
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Dependencies

* Dependencies are explicit metadata on values
e Library tracks and attaches them to put_afters



Dependencies

 Dependencies are explicit metadata on values
e Library tracks and attaches them to put_afters

Client 1

-

put_after(Key,Val,deps)
>

put(Key, Val))

version
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Dependencies

 Dependencies are explicit metadata on values

* Library tracks and attac

nes them to put_afters

Client 2

get(K)

get(K)

value

>

3

deps

version

337

value,version,deps'




Causal+ Replication

put_after(K,V,deps)

Replication Q
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Causal+ Replication

dep_check(L337l

put_after(K,V,deps)

Exposing values after
dep_checks return
ensures causal+
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Basic COPS Summary

* Serve operations locally, replicate in background
— “Always On”

e Partition keyspace onto many nodes
— Scalability

* Control replication with dependencies

— Causal+ Consistency



This Isn’t Enough

Datacenter 1 Datacenter 2

Boss

Boss

Looking for
Status Looking for Looking for a new job

a new job a new job

--------- T----------r-----r------------

* Get Transactions: Provide consistent view of multiple keys
e get trans(keyl, key2, key3)
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System So Far

 ALPS and Causal+, but ...

* Proliferation of dependencies reduces
efficiency
— Results in lots of metadata
— Requires lots of verification



Many Dependencies

* Dependencies grow with client lifetime
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Nearest Dependencies

AW
\/ 1

* Nearest are few
* Only check nearest when replicating

/\

\

\
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A
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Other Mechanisms

* Garbage Collection Subsystem
— Reduce the amount of extra state in the system

 Fault Tolerance

— Clients, nodes and datacenter failures

e Conflict Detection Mechanisms



Latency and Throughput

. Latency (ms) Throughput
System  Operation 50% 99% 999%  (Kops/s)
Thrift ping 0.26 3.62 12.25 60
COPS get_by_version 0.37 3.08 11.29 52
COPS-GT  get_by_version 0.38 3.14 0.52 52
COPS put_after (1) 0.57 6.91 11.37 30
COPS-GT  put_after (1) 0.91 5.37 7.37 24
COPS-GT  put_after (130) 1.03 7.45 11.54 20

Table 2: Latency (in ms) and throughput (in Kops/s) of vari-
ous operations for 1B objects in saturated systems. put_after(x)
includes metadata for x dependencies.
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COPS Scales Out
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Figure 12: Throughput for LOG with 1 server/datacenter, and COPS and COPS-GT with 1, 2, 4, 8, and 16 servers/datacenter, for a
variety of scenarios. Throughput is normalized against LOG for each scenario; raw throughput (in Kops/s) is given above each bar.
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Comments

Suggests keeping metadata to track dependencies. Isn’t this
what Lamport timestamps wanted to avoid?

Scalability benefits are not clear

— No comparison with other systems
— No WAN delays
— No comparison with eventually consistent data stores

Will it require each new application that adopts COPS to
create a new client library?



Backup Slides



Data Store Node
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Figure 4: The COPS architecture. A client library exposes a put/get interface to its clients and ensures operations are properly labeled
with causal dependencies. A key-value store replicates data between clusters, ensures writes are committed in their local cluster only
after their dependencies have been satisfied, and in COPS-GT, stores multiple versions of each key along with dependency metadata.







Latency and Throughput

. Latency (ms) Throughput
System  Operation 50% 99% 999%  (Kops/s)
Thrift ping 0.26 3.62 12.25 60
COPS get_by_version 0.37 3.08 11.29 52
COPS-GT  get_by_version 0.38 3.14 0.52 52
COPS put_after (1) 0.57 6.91 11.37 30
COPS-GT  put_after (1) 0.91 5.37 7.37 24
COPS-GT  put_after (130) 1.03 7.45 11.54 20

Table 2: Latency (in ms) and throughput (in Kops/s) of vari-
ous operations for 1B objects in saturated systems. put_after(x)
includes metadata for x dependencies.
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Experimental Setup

* Built on top of FAWN-KV: linearizable KV store within
a local cluster
* Doesnotdo:
* Chain Replication
* Conflict Detection
* Experiments in a single cluster with multiple logical
datacenters

System Causal+  Scalable Get Trans
LOG Yes No No
COPS Yes Yes No
COPS-GT Yes Yes Yes

Table 1: Summary of three systems under comparison.
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