
An Empirical Study on Configuration Errors

in Commercial and Open Source Systems
Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L. N., &

Pasupathy, In Proceedings of SOSP 2011.

Presented by: Ala’ Alkhaldi

April 16, 2013

4/16/2013

1

Configuration errors
Very Significant

Great impact on system availability: e.g. Facebook outage, 2010

Prevalent: 27%-50% of system faults

Very expensive: Technical support costs 17% of the total systems cost

Difficult to study

Poorly documented: Undetailed issue-repositories, and in the form of

unstructured user driven textual descriptions

Confidential information

Studying them is mostly a manual task !
4/16/2013

2

Research efforts
Detection

PeerPressure uses statistical methods on
large configuration sets to identify single
configuration parameter errors

Diagnosis

AutoBash tries out fixes from a solution
database to find proper solution to a
configuration problem

Avoidance

Using predefined rules (SmartForg), machine
learning, or templates for automatic
configuration generation

Tolerance and online validation
4/16/2013

3

This paper studies the characteristics

of the real-world configuration errors

 Statistics and classifications would benefit

current research directions and tools.

 Guiding system developers in designing

systems configuration logic

Data sets
 Sources

 COMP-A storage system

 Closed cases in the customer-issue DB

 1000 cases marked as “Configuration”

are filtered to be 309 cases

 Open-source systems

 Closed cases from official support forms, mailing lists, and ServerFaults.com

 237 cases are randomly sampled

 Data is manually processed

 Concerns about data validity and limitations

 Data set size and sampling error

 Relying on user reported error

 Trivial errors are not reported.

 Expert vs. novice users

 Configuration error fixed by user environments are not considered

 It doesn’t differentiate between system versions
4/16/2013

4

The study covers

1. Prevalence of configuration errors

2. Types of configuration errors

3. System reactions to configuration errors

4. Frequency of different causes of configuration errors

5. Impact of configuration errors

4/16/2013

5

Warning: There will be lots of graphs and numbers. Bear with me!

1. Prevalence of configuration errors

4/16/2013

6

 Problem cause and severity are identified by COMP-
A engineers

 No such labeled data is available for open source
systems

 Configuration percentage might be inflated by the
popularity of customer requests for conf. information

Finding 1:
A significant percentage of

customer cases are related to

configuration issues.

Finding 2:
Configuration issues causes

the largest percentage of high-

severity support requests.

2. Types of configuration errors

4/16/2013

7

1. Configuration Parameter mistakes

2. Software compatibility errors

3. Other errors (Component)

Sampling error

2.1. Parameter configuration errors
 Parameter: is a value set in a configuration file or sent

through a console command

 70%- 85% of configuration mistakes

 Raises a flag for system designers to create less config-knobs
and more auto-config

 Can be detected automatically by checking against configuration
rules

4/16/2013

8

 Two Types:

 Legal (46%-62%): Syntactically correct but causes

functional and performance problems (Hard to detect)

 Illegal:

 Illegal format: Lower/upper case, field separator, etc

 Illegal values (The majority): parameter value violates

some constraint or inconsistent with other values or

with the environment

 Number of Erroneous parameters

 Problem domains of parameter mistakes

4/16/2013

9 2.1. Parameter configuration errors, cont.

74.50%

23.40%

2.10%

Involved Parameters

One

Multiple

Unknown

83.00%

14.90%
2.10%

Fixed Parameters

One

Multiple

Unknown

18.30%

16.80%

7.10%
26.20%

31.60%

Error Domains
Networking

Permissions

Performance adjustment

Device Configurations

Others

2.2. Software compatibility configuration errors
 Improper combinations of components or their version.

18.3% of configuration error types

 Software upgrades are not a major source of these errors (only 18.5%)

 Could be mitigated by using package-management systems, self-contained
packages, or delivering the system as virtual machine

4/16/2013

10

2.3. Component configuration errors

 Errors related to how the system

is organized and how resources

are supplied, e.g.: missing

software components, error in

files format, etc.

3. System reaction to configuration errors

4/16/2013

11

Finding: Only 7%-15% of the studied configuration provides explicit

messages that pinpoint the problem configuration error

 Quiet Failures could cause mysterious behaviors

 Example: A web application used both mod_python and mod_wsgi modules in

Apache server. These two modules used two different version of Python,

which caused segmentation fault errors when trying to access the web page.

 5%-8% of the cases

4/16/2013

12 3. System reaction to configuration errors, cont.

18.90%

43.20%

20.50%

17.40%

COMP-A Reactions to Illegal Parameters

Pinpoint

Indetermined

Quiet Failure

Uknown

1 1 1 1 1

13

3 3.4

10

5.3

14.5

5.5

1.2

3 2.5

0

2

4

6

8

10

12

14

16

COMP-A CentOS MySQL Apache OpenLDAP

Normalized Median of Diagnosis Time

Explicit Messages

Ambiguous Messages

No Messages

Although illegal

parameters are easier to

check, only 18.90% of

reactions pinpoint the

actual problem !

Providing irrelevant error messages is

worse than providing no messages !

4/16/2013

13 4. Causes of configuration errors

32.00%

16.70%
5.50% 3.30% 3.20%

53.40%
66.60%

81.80%

66.70%

91.90%

14.20% 16.70% 12.70%

30.00%

4.80%

COMP-A CentOS MySQL Apache OpenLDAP

First-time use vs. Used-to-work
Used-to-Work

First-Time use

Unknown

Finding1: First-Time use errors are the majority. The reasons are:

[1] Lack of knowledge [2] Flawed system design [3] Inconsistent

manuals

Finding2: In complex systems (COMP-A & CentOS) the frequency of

system changes and the complexity of configuration increases the

probability of used-to-work configuration errors

Why do systems stop working in Used-to-Work cases?

Finding3: Parameter-related configuration errors (Collateral

damages, incomplete maintenance, and configuration corrupted by

outage) can benefit from tracking configuration changes and

validation.

14 5. Impact of configuration errors

 The performance of database systems is very sensitive to configuration errors

 In most cases database performance tuning manuals have hundreds of

configuration parameters !

 Compatibility and component errors have severe impact and harder to fix.

Summary

 Configuration errors are significant and could lead to sever

consequences.

 Parameter configuration errors represents a majority of error types.

They can be avoided and easily fixed.

 Configuration options should be as minimal as possible by design.

Using Auto-configuration and ready to use software is a mitigation.

 In case of configuration errors the system should react in details and

pinpoint the root causes of the problem.

4/16/2013

15

Discussion

 Trade of between flexibility in working options and avoiding

configuration problems

 Handling configuration errors in open source systems vs.

commercial systems.

Availability of support service and customer-issue databases.

Without proposition of suggestions or possible solutions, this paper

is more like a technical white paper than an academic one.

4/16/2013

16

SO Much data...
Heterogeneity and Dynamicity of Clouds
at Scale: Google Trace Analysis

Presented by Faraz Faghri

*material is taken from the paper and slides.

Story begins ...

Google cloud cluster
- Large-scale
- Multi-purpose
- Heterogeneous

- Hardware
- Job demand

Data ...
- Data from cluster scheduler.
Tasks (25M): ‘run a program somewhere once’: more like MapReduce
worker than MR task
Jobs (650k): collections of related tasks. no formal co-scheduling
requirement.
- 12.5K machines, one month.

Lessons to be learned ...
For effective cloud-based schedulers.

Google cluster properties:
- Run all workloads on one cluster!

- Increased efficiency:
Fill in “gaps” in interactive workload Delay batch if interactive
demand spikes.

- Increased flexibility:
Share data between batch and interactive.

 Variety of workloads: may be multiple clusters?

!!!

Traditional schedulers assumptions:
- Tasks could be slot and core based.

Traditional schedulers assumptions:
- low variety of workloads (time variant).

Traditional schedulers assumptions:
- Long-running tasks are most usage.

Traditional schedulers assumptions:
- Schedulers don't need to act very frequently.
- 100K+ decisions per hour.

Traditional schedulers assumptions:
Evictions of higher-priority tasks and machine downtime:
- Coincide with those tasks starting:

0.04 evictions/task-hour for lowest priority.
- 40% of machines down once in the month:

Upgrades, repairs, failures.

Traditional schedulers assumptions:
- We have resource estimations and we can trust them.
Wstimate worst-case usage: ~60% of difference from average usage

Traditional schedulers assumptions:
- Machines are homogenous.
Tasks can restrict acceptable machines (for reasons other than
resources)

Used by ~6% of tasks
Examples: Some jobs require each task to be on a different

machine
Some tasks avoid 142 marked machines

Call For Schedulers!
- Complex workloads.
- Complex task requests.
- Complex resources.
- Complex task constraints.
- Distributions not match a power law, lognormal, Weibull, or exponential
distribution.

- Rapid scheduling decisions.
- Complex task restarts.
- No reliable estimations given from tasks.
- Central scheduler might not work, lot's of
immediate changes across a BIG cluster.

Don't forget!

Operation Research folks
have worked on that.

Discussion
- How representative is Google cluster and Google traces?
- Why to have such a multi-purpose cluster?

- Should we go and design a scheduler with this data, how valid are
these numbers with new scheduler?

- Piazza:The authors postulate that the resource requests are being
specified manually. Using machine learning techniques, this should be
feasible to be performed for more efficient usage of resources.

