
Bigtable,
Spanner and Flat
Datacenter
Storage
by Onur Karaman and Karan Parikh

Introducing
Bigtable

Why Bigtable?

● Store lots of data
● Scalable
● Simple yet powerful data model
● Flexible workloads: high throughput batch jobs to low

latency querying

Data Model

● "Sparse, distributed, persistent, multidimensional sorted
map"

● (row: string, column: string, time: int64) → string
● Main semantics are: Rows, Column Families,

Timestamps

Interacting with your beloved data

Implementation

● Consists of client library, one master server and many
tablet servers

● Tables start as a single tablet and are automatically split
as they grow

● Tablet location information stored in a three-level
hierarchy

● Each tablet is assigned to one tablet server at a time
● Master takes care of allocating unassigned tablets to a

tablet server with sufficient room
● Master detects when a tablet server is no longer serving

its tablets using Chubby

SSTables and memtables

● All data is stored on GFS as SSTables
● SSTables are persistent, ordered, immutable key-value

map
● Recently committed updates are held in memory in a

sorted buffer called a memtable
● Compactions convert memtables into SSTables.

Reading and Writing data

● Reads and writes are atomic.

Refinements

● Locality groups
● Compression
● Tablet Server Caching
● Bloom Filters
● Commit-Log Co-Mingling
● Tablet Recovery through frequent compaction
● Exploiting Immutability

Experiments

Open Source

Image Source: http://www.
webresourcesdepot.com/wp-
content/uploads/apache-cassandra.gif

Image Source: http://www.siliconindia.com:
81/news/newsimages/special/1Qufr00E.
jpeg

Criticisms and Questions

● Depends heavily on Chubby. If Chubby becomes
unavailable for an extended period of time, Bigtable
becomes unavailable

● Data model is not as flexible as we think: not suited for
applications with complex evolving schemas (from the
Spanner paper)

● Lacks global consistency for applications that want wide
area replication. (I wonder who can solve this problem?
Spoiler Alert! It's Spanner)

From Piazza:
● "The onus of forming a locality groups is put on clients,

but can’t it be better if done by Master?" by Mayur
Sadavarte

Introducing
Spanner
“As a community, we should no longer
depend on loosely synchronized clocks and
weak time APIs in designing distributed
algorithms.”

Why Spanner?

● Globally consistent reads and writes
● highly available, even with wide-area natural disasters
● "scalable, multi-version, globally-distributed, and

synchronously-replicated database"
● Supports transactions using 2 phase commit and

Paxos

Main focus of this presentation

● True Time
● Transactions

The big players: The Universe

The big players: A Spanserver

Data Model: Tablet Level

● Similar to BigTable tablets
● (key: string, timestamp: int64) string mappings
● Tablets are stored on Colossus (the successor to

Google File System)
● Directory: a bucketing abstraction. It is a set of

contiguous keys that share a common prefix. It is a unit
of data placement and all data is moved directory by
directory (movedir)

Data Model: Application Level

● Familiar notion of databases and tables within a
database.

● Tables have rows, columns and versioned values.
● Databases must be partitioned by clients into

hierarchies of tables. This helps in describing locality
relationships which help in boosting performance

Data Model: Application Level

● "Each row in a directory table with key K, together with
all of the rows in descendant tables that start with K in
lexicographic order, forms a directory."

TrueTime

● Shift from concept of time to time intervals. e.g. suppose absolute time is
t. TT.now() at t will give [t_lower, t_upper], an interval which contains t.
Width of interval is epsilon

● A set of time masters per datacenter
● A timeslave daemon per machine
● Atomic Clocks and GPS
● Daemons poll a variety of masters and synchronize their local clocks to

"non liar" masters.
● epsilon derived from conservatively applied worst-case local clock

drift (between synchronizations). Average is 4ms since the current
applied drift rate is 200 microseconds/second and poll interval is 30s
(Add 1ms for network). Also depends on time-master uncertainty and
communication delay.

TrueTime + Operations

Operation Concurrency
Control

Replica Required

Read-Write
Transaction

Pessimistic Leader

Read-Only
Transaction

Lock-free Leader for timestamp;
any* for read

Snapshot Read w/
client-provided
timestamp

Lock-free any*

Snapshot Read w/
client provided bound

Lock-free any*

* = should be sufficiently up-to-date

TrueTime + Operations: Read Write
Transactions

Reads
● Client issues reads to the leader replica of the

appropriate group
● Leader acquires read locks and reads the most recent

data
● All writes are buffered at the client until commit

Writes
● Clients drive the writes using 2 phase commit
● Replicas maintain consistency using Paxos

TrueTime + Transactions: Read
Write Transactions

TrueTime + Transactions: Read
Write Transactions

TrueTime + Transactions: Read
Write Transactions

TrueTime + Transactions: Read
Write Transactions

TrueTime + Transactions: Read
Write Transactions

TrueTime + Transactions: Read
Write Transactions

TrueTime + Transactions: Read
Write Transactions

TrueTime + Transactions: Read
Write Transactions

TrueTime + Transactions: Reads at a
timestamp
● Reads can be served at any sufficiently up-to-date

replica
● Uses the concept of "safe-time" to determine how up-to-

date a replica is
● t_safe = min(t_Paxos_safe, t_TM_safe). Per replica

basis
● Can serve a read at timestamp t at a replica r iff t <=

t_safe
● t_Paxos_safe = timestamp of the highest applied Paxos

write
● t_TM_safe = min(prepare_i) - 1 over all the transactions

involving this group
● t_TM_safe is infinity if there are zero prepared but not

committed transactions

TrueTime + Transactions:
Generating a read timestamp

We need to generate a timestamp for Read-Only
Transactions (clients supply timestamps/bounds for
Snapshot reads)
● 1 Paxos group: timestamp = timestamp of the last

committed write at a Paxos group
● Multiple Paxos groups: timestamp = TT.now().latest.

This is simple though it might wait for the safe time to
advance.

Experiments

Experiments

Case Study: F1

F1 is Google's advertising backend. It has 2 replicas on
the west coast and 3 on the east coast. Data measured
from East coast servers.

Open Source

Yet.

Questions and Criticisms from
Piazza
● "Overhead of Paxos on each tablet has not been evaluated much."

by Mainak Ghosh
● "It is not clear for me how the TrueTime error bound is computed.

How does it take into account of local clock drift and network
latency. How sensitive it is to the network latency, since a client has
to pull the clock from multiple masters, including master from
outside datacenter, so the network latency should not be non-
negligible" by Cuong Pham

● "Whether Spanner disproves CAP? Is Spanner an actually
distributed ACID RDBMS?" by Cuong Pham

● "This paper is only a part of Spanner and doesn't include too much
technical details of TrueTime and how time synchronization is
being performed across the whole Spanner deployment. It will be
interesting to read the design of TrueTime service as well." by
Lionel Li

Introducing Flat
Datacenter
Storage
"FDS' main goal is to expose all of a cluster's
disk bandwidth to applications"

Why FDS?

● "a high-performance, fault-tolerant, large-scale, locality-
oblivious blob store."

● We don't need to move computation to the data
anymore

● datacenter bandwidth is now abundant
● "flat": drops the constraint of locality based processing
● dynamic work allocation

Data Model

● Blobs
● Tracts

API

● Non-blocking async API
● Weak consistency guarantees

Implementation

● Tractservers
● Metadata server
● Tract Locator Table (TLT):

Tract_locator = (Hash(g) + i) mod TLT_Length

Networking

● datacenter bandwidth is abundant
● full bisection bandwidth
● high disk-to-disk bandwidth

Experiments

Questions and Criticisms from
Piazza

● "Cluster growth can lead to lot of data transfer as
balancing is done again. They have not given any
experimental evaluation of this part of the work. Feature
like variable replication also complicates this process."
by Mainak Ghosh

References

● All information and graphs about Bigtable is from http:
//research.google.com/archive/bigtable.html

● All information and graphs about Spanner is from https:
//www.usenix.
org/system/files/conference/osdi12/osdi12-final-16.pdf

● All information and graphs about Flat Datacenter
Storage is from https://www.usenix.
org/system/files/conference/osdi12/osdi12-final-75.pdf

http://research.google.com/archive/bigtable.html
http://research.google.com/archive/bigtable.html
http://research.google.com/archive/bigtable.html
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-75.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-75.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-75.pdf

