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} Cake 
}   Coordinated (multiresource) 2-level 

scheduling system for shared storage 
systems 

}   Enforces SLO requirements of the 
clients. 
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}  Cake 
}  Coordinated 2-level scheduling system for    

    shared storage systems 
 
 
 2 classes of datacenter applications 

Front End Web Server  
User Facing 

Latency Sensitive 

Internal 
Batch Analytics  

Throughput-Oriented 

Different workloads, 
requirements 



Service Level Objective 
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Performance Metric (Ex: 99th percentile latency) 

  of   
Requirement (Ex:100 ms) 

  for  
Type of Request  (Ex: get request) 

 



Service Level Objective (Examples) 
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}  Latency SLO: 
}  99th percentile latency of 100ms for get requests  

} Throughput SLO: 
}  100 8KB scan requests per second 

}  90% of calls to the helpdesk should be answered in less 
than 20 seconds… 
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}  Cake 
}  Coordinated 2-level                                     for  
    shared storage systems 

 
 
 

scheduling system 

•  Schedules different types of requests received by 
clients. 

•  Grants access to a hardware resource – cpu, disk. 
•  REMEMBER : It is a user-level scheduling system (on top 

of OS scheduler)  
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}  Cake 
}                               2-level scheduling system for      
      shared storage systems 

 
 
 

Coordinated 

•  Provides scheduling at multiple 
resources – cpu, disk. 

•  Scheduling at different 
resources is coordinated. Why? 
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}  Cake 
}  Coordinated 2-level scheduling system for 

 
 
shared storage systems 

•  Both classes of applications share a 
distributed storage system – HBase, HDFS, 
Cassandra etc.  



Motivation 
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} Separate storage systems for both the 
classes of applications. 

} Hard to multiplex front-end (web server) 
storage and backend (analytics) storage. 

} Different workloads and requirements for 
both these classes. 

} We don’t want to violate SLOs of web-
clients. 
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    Front End Backend 



Motivation 
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    Front End Backend 

UUU Users 

Data 

Analysis 



Cake in one slide 
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}  Observation: 
}  Separate storage systems for front-end and back-end 

applications 
}  Problem: 

}  Hard to multiplex latency sensitive applications and 
throughput-oriented applications.  

}  Why? – inherent latency v/s throughput tradeoff in rotational 
media storage 

}  Solution: 
}  Have separate queue each for latency sensitive applications 

requests and throughput-oriented applications requests 
}  Schedule them by giving higher priority for latency sensitive 

applications so that SLOs are met 



Cake Objectives 
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} Combine both the workloads 
}   consolidate separate front-end and batch 

storage clusters 

} Meet front-end latency requirements 

} Then maximize batch throughput 



Cake Benefits 
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UUseU Users 

Batch 
Analysis 

Consolidated 

•  Lower cost of provisioning 
•  Better cluster utilization 
•  Improved performance. 
•  Also meets SLOs 



Recap 
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} Cake  

} Coordinated mutliresource scheduler 
} Can consolidate storage systems for different 

types of workloads (latency sensitive vs 
throughput-oriented) 

}   Also meets SLO requirements 
 



System Design 
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Client 

  HBase 

HDFS 

GET 

lookup 

READ READ DATA 

Process 

RESPONSE 



System Design 
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Client 

  HBase 

HDFS 

RPC Handlers 

RPC 
Handlers 

CPU Usage 

Disk Usage 
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Client 

  HBase 

HDFS 

RPC Handlers 

RPC 
Handlers 

CPU Usage 

Disk Usage 

1st –level -Scheduler 

1st –level -Scheduler 

•  Responsible for 
scheduling at single 
resource (disk, cpu etc) 

•  Built into RPC layer of 
each software 
component 
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Client 

  HBase 

HDFS 

RPC Handlers 

RPC 
Handlers 

CPU Usage 

Disk Usage 

1st –level -Scheduler 

1st –level -Scheduler 

2nd –level-Scheduler 

•  Gets perf. Metrics 
from 1st –level-
schedulers. 

•  Coordinates the 
resource allocation at 
1st –level-schedulers. 

•  Enforces SLOs 



System Design 
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} Add scheduling points within the 
system 

} Dynamically adjust allocations to 
meet SLO requirements. 

} Evaluated on HBase/HDFS system. 



Schedulers : Overview 
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}  First-Level Schedulers 
}  Give control over underlying hardware resource : cpu, disk 
}  Implemented at different layers of software stack (HBase, 

HDFS) 

}  Second-Level Scheduler 
}  Coordinates first-level schedulers to decide allocations 
}  Enforces SLO requirements 



System Design 
First-Level Schedulers 
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} Provide effective control over the 
underlying hardware – cpu, disk etc. 

} Coordinate with second-level-
scheduler 



System Design 
First-Level Schedulers 
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} Effective scheduler requirements 
}   Differentiated Scheduling 
}   Split large requests 
}   Control number of outstanding 

requests 



System Design 
First-Level Schedulers – Differentiated Scheduling 
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}  FIFO Scheduling Scheme 
}  Problems 
}  Unfairness with a single FIFO queue 
}  Front-end requests block behind 
   batch requests 

}  Solution :  
}  Separate queues for both 
    classes of applications 
 

 

HBase/
HDFS 

OS 



System Design 
First-Level Schedulers – Differentiated Scheduling 
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}  Schedule based on allocations 
   set by the 2nd –level scheduler 
}  Allocations :  

}  Proportional share allocation 
}  Reservations  

}  Problems: 
}  Large requests might tie up resources 
}  Requests can be non-prememptible 

}  Solution : split large requests 

HBase/
HDFS 

OS 



System Design 
First-Level Schedulers – Splitting large requests 
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}  Split large requests into multiple chunks 
}  Only wait for a chunk than an entire  
    large request 
}  Tradeoff : 

}  Lower latency but lesser throughput 

}  For the experiments performed, 64KB 
chunk size was found to be optimal 

HBase/
HDFS 

OS 



System Design 
First-Level Schedulers – Limiting outstanding requests 
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}  A device can only handle a certain number of 
concurrent executions 

}  Need to make sure the thread pool size at HBase/
HDFS is optimal 
}  Not overwhelming the device 
}  Not underloading the device  
 



System Design 
First-Level Schedulers – Limiting outstanding requests 
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}  TCP congestion control technique : AIMD (additive 
increase multiplicative decrease) 
}  Periodically determine the device latency 
}  If device underloaded, additively increase # of threads 
}  If device overloaded, multiplicatively decrease # of threads 
}  Claim : converges in general case 



System Design 
Second-Level Scheduler 
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}  Decides allocation at first-level schedulers 
}  Collects performance and queue occupancy metrics from first-

level schedulers. 
}  Every interval (10 secs) – uses these metrics to decide 

scheduling allocations at first-level schedule 
}  Enforces front-end client’s SLOs. 



System Design 
Second-Level Scheduler 
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}   2 phases in allocation  
} SLO Compliance-based 

} Adjusts allocations at HDFS. 
} Queue Occupancy-based 

} Adjusts HBase allocation based on queue 
occupancy at HDFS and HBase 



System Design 
Second-Level Scheduler : SLO Compliance-Based Phase 
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}  Adjusts HDFS allocations 
}  Disk is the bottleneck in storage workloads 
}  Clients performance < SLO 

}  Increase allocation when performance < SLO 

}  However, if client’s performance is very good 
}  Decrease allocation 

 



System Design 
Second-Level Scheduler : Queue Occupancy-Based Phase 
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}  Disk bottleneck workloads. But HBase can be bottleneck 
too (processing of get requests at HBase can be 
expensive) 

}  HBase can throttle HDFS 
}  Balance HBase/HDFS allocation 
}  Queue occupancy metric: 

}  % of time a client’s requests is waiting in the queue at a 
resource 

}  Increase allocation when more queuing at HBase  
}  Decrease allocation when more queuing at HDFS 



Evaluation   
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}  Several challenging consolidated workload scenarios 
}  Yahoo! Cloud Serving Benchmark (YCSB) clients to generate 

simulated front-end and batch load. 
}  Front-end clients – configured to make single-row requests 

(8KB data) 
}  Batch MapReduce clients configured to make 500-row scans 

(4MB data) 
}  C1.xlarge EC2 instances 



Evaluation : Diurnal Workload Scenario 
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}  Traces obtained from a web-server workload of an 
“industrial partner” 

}  Front-end running web serving workload 
}  Batch client running at max throughput 

}  Goals  
}  Evaluate ability to adapt to dynamic workload patterns 
}  Evaluate latency v/s throughput trade-off 



Evaluation : Diurnal Workload Scenario 
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    3x difference 

Front-end throughput 
according to diurnal pattern 



Evaluation : Diurnal Workload Scenario 
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Front-end 
99th SLO  
(in ms) 

% of requests 
meeting 
latency 
requirements 

Batch 
Throughput  

100 98.77 24.6 queries/s 

150 99.72 41.2 queries/s 

200 99.88 41.2 queries/s 

Details/Observations  
•  3 experiments with different front-end 

latency SLOs (100ms, 150ms, 200ms) 
•  Observe that we miss the 100ms SLO 

slightly. The 99th percentile latency for this 
experiment is at 105ms. 

•  Throughput increases as latency 
requirements relax.  Traditional in 
rotational storage media 

 

99% line 



Evaluation : Diurnal Workload Scenario 
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                Second-level scheduler actions at HBase and HDFS for 100ms SLO 

SLO compliance-based algorithm Queue occupancy-based algorithm 



Evaluation : Spike Workload Scenario  
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}  Goal – evaluate the ability of the system to deal with 
sudden traffic spikes 

The spike workload considered for 
the experiment 



Evaluation : Spike Workload Scenario  
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Front-end latency 
SLO (ms) 

Batch Throughput 

100 22.9 queries/s 

150 38.4 queries/s 

200 45 queries/s 

Observations 
•  3 experiments with different front-

end latency SLOs (100ms, 150ms, 
200ms) 

•  Observe that we miss the 100ms 
SLO slightly. The 99th percentile 
latency for this experiment is at 
107ms. 

•  Throughput increases as latency 
requirements relax.  Traditional in 
rotational storage media 

•  200 ms SLO achieves higher 
throughput than diurnal case.  

 

99% line 



Evaluation : Convergence Time 
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Workload : 
Front-End workload : 100 qps + 
Unthrottled batch client 
Latency SLO placed: 150 ms 99th 
percentile 
Scheduler Interval : 10s 

Observations 
•  40 secs to fall below SLO 
•  150 secs to stabilize. 
 

Convergence for dynamic 
workloads like diurnal? 



Evaluation : Analytics 
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}  20-node EC2 cluster  
}  Front-end YCSB client running diurnal pattern 
}  Batch MapReduce scanning over 386GB data 
 
}  Goals: 

}  Quantifying benefits of consolidating separate front-end and 
backend storage clusters 

}  Evaluate analytics time and provisioning cost 
}  Evaluate SLO compliance 



Evaluation : Analytics 
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Performance Gains: 
1.7x speedup +  
50% provisioning cost 



Evaluation : Summary 
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} Can adapt to changing workload pattern 
} Can adapt to spike workload pattern 
} Can adjust SLOs to give control over 

latency v/s throughput tradeoff 
} Performance: 

}  1.7 x speedup in batch/analytics jobs 
}  50% provisioning cost 



Discussion 
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}  Convergence times on dynamic workload? Is Cake guaranteed 
to converge?  

}  SLOs on throughput? 
}  No experiments on write workloads. Some SLOs were 

violated for read requests. They could be more severe for 
writes 

}  Extensibility to new storage abstractions? 
}  Not possible to implement 1st level scheduling criteria at all 

layers. Chunking not applied at HBase   
}  Future Work : SLO admission control, Application-level SLOs, 

use of SSDs, parameter tuning, multiple SLOs  
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Resource Demands in a Datacenter	
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One month (Oct 2010) trace of CPU and Memory demands���

2000-node Hadoop cluster at Facebook	




Schedulers in Practice	

•  Slot based schedulers	


• Allocate resources at the granularity of slots	


•  Slot is a fixed fraction of a node	


• Agnostic of user demand heterogeneity	


•  Example	


• Quincy (Dryad)	


• Hadoop’s Fair Scheduler	


• Outcome?	


• Underutilization	


• Thrashing	


• Users can game the system	
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It really happens!	

• Users game the system (Not strategy-proof)	


• Yahoo! Hadoop cluster allocated more slots for Reduce	


• User launched all his jobs as long reduce phases	


• A “Big” search company provided dedicated machines for 
jobs that had high utilization	


• Users inserted artificial infinite loops	


• Underutilization and Over-utilization	


• CDF of demand to slot ratio ���
in the Facebook example.	


ratio < 1 : Underutilizing	


ratio > 1 : Over-utilizing	
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It really happens!	

• Users game the system (Not strategy-proof)	


• Yahoo! Hadoop cluster allocated more slots for Reduce	
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60% tasks need more CPU	

95% had atleast double of what really required	




Problem Definition	


• How to 	


• Fairly Share 	


• Multiple type of resources 	


• Among	


• Different Users	


• When users have 	


• Heterogeneous demands	
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Fairness Policy	

• Sharing incentive	


• Each user should get at-least 1/n fraction of the cluster	


• Strategy-proof	


• One cannot ‘cheat’ by lying about demand	


• Envy-free	


• User should not prefer allocation of the other	


• Pareto-efficiency	


• Cannot increase allocation of a user without the expense 
of another	




• Single resource fairness	


• Reduce to max-min fairness in single resource scenario	


• Bottleneck fairness	


• Reduce to max-min on bottleneck resource if it is the only 
dominant resource	


• Population monotonicity	


• A user leaves è Other users allocation do not decrease	


• Resource monotonicity	


• Resource added è No users allocation decrease	
 8	


Fairness Policy	




Single Resource Fairness	

• Max-Min Fairness strategy	


• Allocate chunks in the order of increasing demand	


• Nobody gets more than what it asks	


• All unsatisfied demands get an equal share	
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Single Resource Fairness	

• Max-Min Fairness strategy	


• Allocate chunks in the order of increasing demand	


• Nobody gets more than what it asks	


• All unsatisfied demands get an equal share	


1	
 4	
 6	
 10	


*Animation adapted from https://theone.ece.cmu.edu/drupal/sites/default/files/papers/Dominant%20Resource%20Fairness.pptx  	


Maximizes the Minimum 
share of the unsatisfied ones	


Round Robin, TCP, Fair Queueing, etc. all 
try to approximate Max-Min Fairness	


Only “reasonable” mechanism with Sharing 
incentive and Strategy-proof properties	




Max-Min Fairness	


• Multiple Resource	


• 2 resources: CPUs & memory	


• User 1 wants <1 CPU, 4 GB> per task	


• User 2 wants <3 CPU, 1 GB> per task	


• What is a fair allocation?	


• Users have tasks according to a demand vector	


• Not needed in practice, can simply measure actual consumption	


• Assume divisible resources	


CPU 

100% 

50% 

0% 
mem 

 ?       ?	


Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13,	

           http://www.eecs.berkeley.edu/~kubitron/cs262	
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• Asset Fairness	


• Equalize each user’s sum of resource shares	


• Cluster with 70 CPUs, 70 GB RAM	

•  U1 needs <2 CPU, 2 GB RAM> per task	


•  U2 needs <1 CPU, 2 GB RAM> per task	


• Asset fairness yields	


•  U1: 15 tasks: 	
30 CPUs, 30 GB (∑=60)	


•  U2: 20 tasks:   	
20 CPUs, 40 GB (∑=60)	


A Natural Policy: Asset Fairness	


CPU	


User 1	
 User 2	


100%	


50%	


0%	

RAM	


43%	


57%	


43%	


28%	
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• Asset Fairness	


• Equalize each user’s sum of resource shares	


• Cluster with 70 CPUs, 70 GB RAM	

•  U1 needs <2 CPU, 2 GB RAM> per task	


•  U2 needs <1 CPU, 2 GB RAM> per task	


• Asset fairness yields	


•  U1: 15 tasks: 	
30 CPUs, 30 GB (∑=60)	


•  U2: 20 tasks:   	
20 CPUs, 40 GB (∑=60)	


A Natural Policy: Asset Fairness	


CPU	


User 1	
 User 2	


100%	


50%	


0%	

RAM	


43%	


57%	


43%	


28%	


Problem	

User 1 has < 50% of both CPUs and RAM	

	


Better off in a separate cluster with 50% of the 
resources	
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Dominant Resource Fairness	

• A user’s dominant resource is the resource she has the biggest 

share of	


• Example: 	


	
Total resources:  	
<10 CPU, 	
4 GB>	


	
User 1’s allocation: 	
<2 CPU, 	
1 GB> 	


	
Dominant resource is memory as 1/4 > 2/10 (1/5)	


• A user’s dominant share is the fraction of the dominant 
resource she is allocated	

• User 1’s dominant share is 25% (1/4)	
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Dominant Resource Fairness	

Example: 	


	
Total resources:  	
<9 CPU, 18 GB>	


	
User 1 demand: 	
 <1 CPU, 4 GB> dominant res: mem	


	
User 2 demand: 	
 <3 CPU, 1 GB> dominant res: CPU	
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max(x, y)
s.t
x + 3y ≤ 9
4x + y ≤18
2x
9

= y
3

∴ x = 3, y = 2



Dominant Resource Fairness	

Example: 	


	
Total resources:  	
<9 CPU, 18 GB>	


	
User 1 demand: 	
 <1 CPU, 4 GB> dominant res: mem	


	
User 2 demand: 	
 <3 CPU, 1 GB> dominant res: CPU	
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max(x, y)
s.t
x + 3y ≤ 9
4x + y ≤18
2x
9

= y
3

∴ x = 3, y = 2

CPU Constraint	


Memory Constraint	


DRF Equalize	


User 1:  <3 CPU, 12 GB>, User2: <6 CPU, 2 GB> 	


x tasks from User1, y tasks from User2	




Dominant Resource Fairness	

Example: 	


	
Total resources:  	
<9 CPU, 18 GB>	


	
User 1 demand: 	
 <1 CPU, 4 GB> dominant res: mem	


	
User 2 demand: 	
 <3 CPU, 1 GB> dominant res: CPU	


	

User 1	


User 2	


100%	


50%	


0%	

CPU	


(9 total)	

mem	


(18 total)	


3 CPUs	
 12 GB	


6 CPUs	
 2 GB	


66%	


66%	
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Online DRF Scheduler	


	


•  Easy computation	


•  O(log n) time per decision using binary heaps	


•  How to determine demand vectors?	


Whenever there are available resources and tasks to run:	

	


Schedule a task to the user with smallest dominant share 	
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Alternative: CEEI	

• Approach	


• Set prices for each good	


• Let users buy what they want	


• How do we determine the right prices for different goods?	


• Let the market determine the prices	


• Competitive Equilibrium from Equal Incomes (CEEI) 	


• Give each user 1/n of every resource 	


• Let users trade in a perfectly competitive market	


• Not strategy-proof!	
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CEEI	
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max(x.y)
s.t
x + 3y ≤ 9
4x + y ≤18

∴ x = 45
11
, y = 18

11



CEEI	
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max(x.y)
s.t
x + 3y ≤ 9
4x + y ≤18

∴ x = 45
11
, y = 18

11

CPU Constraint	


Memory Constraint	


User 1:  <4.1 CPU, 16.4 GB>, 
User2: <4.9 CPU, 1.6 GB> 	


Product of Nash Products	




DRF vs CEEI	

•  User 1: <1 CPU, 4 GB>  User 2: <3 CPU, 1 GB>	


•  DRF more fair, CEEI better utilization	

 CPU        mem!

user 2!
user 1!

100%!

50%!

0%!

 CPU        mem!

100%!

50%!

0%!

Dominant	  
Resource	  
Fairness	  

Compe22ve	  
Equilibrium	  from	  
Equal	  Incomes	  

66%	


66%	


55%	


91%	
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DRF vs CEEI	

•  User 1: <1 CPU, 4 GB>  User 2: <3 CPU, 1 GB>	


•  DRF more fair, CEEI better utilization	

 CPU        mem!

user 2!
user 1!

100%!

50%!

0%!

 CPU        mem!

100%!

50%!

0%!

Dominant	  
Resource	  
Fairness	  

Compe22ve	  
Equilibrium	  from	  
Equal	  Incomes	  

66%	


66%	


55%	


91%	


 CPU        mem!

100%!

50%!

0%!

 CPU        mem!

100%!

50%!

0%!

Dominant	  	  
Resource	  
Fairness	  

Compe22ve	  
Equilibrium	  from	  
Equal	  Incomes	  

66%	


66%	


60%	


80%	
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User 1: <1 CPU, 4 GB>  User 2: <3 CPU, 2 GB>	


User 2 increased her share of both CPU and memory	




DRF vs CEEI	

•  User 1: <1 CPU, 4 GB>  User 2: <3 CPU, 1 GB>	


•  DRF more fair, CEEI better utilization	
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User 1: <1 CPU, 4 GB>  User 2: <3 CPU, 2 GB>	


User 2 increased her share of both CPU and memory	




DRF vs Asset Fairness vs CEEI	

• Resources <1000 CPUs, 1000 GB>	


• 2 users A: <2 CPU, 3 GB> and B: <5 CPU, 1 GB>	


User A	


User B	


a) DRF	
 b) Asset Fairness	
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 CPU	
 Mem	
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c) CEEI	




Comparison	

Property	
 Asset Fairness	
 CEEI	
 DRF	

Sharing Incentive	
 ✗	
 ✓	
 ✓	

Strategy-Proofness	
 ✓	
 ✗	
 ✓	

Envy-freeness	
 ✓	
 ✓	
 ✓	

Pareto efficiency	
 ✓	
 ✓	
 ✓	

Single Resource 
Fairness	


✓	
 ✓	
 ✓	

Bottleneck Fairness	
 ✗	
 ✓	
 ✓	

Population 
Monotonicity	


✓	
 ✗	
 ✓	

Resource 
Monotonicity	


✗	
 ✗	
 ✗	
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Evaluation	


• Micro-experiments	


•  48 node Mesos cluster on EC2	


•  Extra large instances with 4 CPU cores and 15 GB of RAM	


•  Two jobs, one CPU intensive, one memory intensive	


• Compare DRF with current Hadoop scheduler	


• Macro-benchmark through simulations	


•  Simulate Facebook trace with DRF and current Hadoop 
scheduler	




Micro Experiments	
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Job1’s Share	


Job 2’s share	


Dominant Share	




Hadoop Fair Scheduler Experiments	


	


• Hadoop Fair Scheduler/capacity/Quincy	


• Each machine consists of k slots (e.g. k=2~6)	


• Run at most one task per slot	


• apply max-min fairness to slot-count	


	


33	




Micro Experiments	
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Number of large jobs completed	


Number of small jobs completed	
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Micro Experiments	
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Number of large jobs completed	


Number of small jobs completed	
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Micro Experiments	
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Average response time for large jobs	


Average response time for small jobs	
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Micro Experiments	
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Average response time for large jobs	
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Macro Benchmarks	
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Average reduction of the completion times for different job sizes for a 
trace from a Facebook Hadoop cluster	




Utilization	


39	


CPU and Memory utilization for DRF and slot fairness for a trace from 
Facebook Hadoop Cluster	




Discussions	

•  Fair sharing vs. Meeting Deadlines? (Indy)	


•  Is the job throughput only concern?	


•  What is the cloud specific requirement behind this research?	


•  Why don’t we require / apply this fairness in a single machine OS?	


•  Is multi-tenancy of a cloud the only reason for this scheduling?	


•  Only Memory and CPU ! IO, Network, Disk is absent from experiments?	


•  Hadoop stores the intermediate results in persistence storage 	


•  They are considering exclusive resources. What about shared resources in the Datacenter? How to 
share the network?	


•  Multi-Resource Fair Queueing for Packet Processing: SIGCOMM 2012	


•  Schedule multiple resources in a Middleboxes  (IDS, VPN, Firewall, Wan Optimizer etc)	


•  What about the task placement constraints?	


•  Integrate DRF with Hadoop?	


•  Leaves some resource unutilized	


•  Adding more resources to the system may decrease the allocations for existing users.	


•  Proved in the paper that satisfying everything is not possible	
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