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} Cake 
}   Coordinated (multiresource) 2-level 

scheduling system for shared storage 
systems 

}   Enforces SLO requirements of the 
clients. 
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}  Cake 
}  Coordinated 2-level scheduling system for    

    shared storage systems 
 
 
 2 classes of datacenter applications 

Front End Web Server  
User Facing 

Latency Sensitive 

Internal 
Batch Analytics  

Throughput-Oriented 

Different workloads, 
requirements 



Service Level Objective 
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Performance Metric (Ex: 99th percentile latency) 

  of   
Requirement (Ex:100 ms) 

  for  
Type of Request  (Ex: get request) 

 



Service Level Objective (Examples) 
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}  Latency SLO: 
}  99th percentile latency of 100ms for get requests  

} Throughput SLO: 
}  100 8KB scan requests per second 

}  90% of calls to the helpdesk should be answered in less 
than 20 seconds… 
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}  Cake 
}  Coordinated 2-level                                     for  
    shared storage systems 

 
 
 

scheduling system 

•  Schedules different types of requests received by 
clients. 

•  Grants access to a hardware resource – cpu, disk. 
•  REMEMBER : It is a user-level scheduling system (on top 

of OS scheduler)  
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}  Cake 
}                               2-level scheduling system for      
      shared storage systems 

 
 
 

Coordinated 

•  Provides scheduling at multiple 
resources – cpu, disk. 

•  Scheduling at different 
resources is coordinated. Why? 
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}  Cake 
}  Coordinated 2-level scheduling system for 

 
 
shared storage systems 

•  Both classes of applications share a 
distributed storage system – HBase, HDFS, 
Cassandra etc.  



Motivation 
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} Separate storage systems for both the 
classes of applications. 

} Hard to multiplex front-end (web server) 
storage and backend (analytics) storage. 

} Different workloads and requirements for 
both these classes. 

} We don’t want to violate SLOs of web-
clients. 
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    Front End Backend 



Motivation 
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    Front End Backend 

UUU Users 

Data 

Analysis 



Cake in one slide 
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}  Observation: 
}  Separate storage systems for front-end and back-end 

applications 
}  Problem: 

}  Hard to multiplex latency sensitive applications and 
throughput-oriented applications.  

}  Why? – inherent latency v/s throughput tradeoff in rotational 
media storage 

}  Solution: 
}  Have separate queue each for latency sensitive applications 

requests and throughput-oriented applications requests 
}  Schedule them by giving higher priority for latency sensitive 

applications so that SLOs are met 



Cake Objectives 
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} Combine both the workloads 
}   consolidate separate front-end and batch 

storage clusters 

} Meet front-end latency requirements 

} Then maximize batch throughput 



Cake Benefits 
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UUseU Users 

Batch 
Analysis 

Consolidated 

•  Lower cost of provisioning 
•  Better cluster utilization 
•  Improved performance. 
•  Also meets SLOs 



Recap 
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} Cake  

} Coordinated mutliresource scheduler 
} Can consolidate storage systems for different 

types of workloads (latency sensitive vs 
throughput-oriented) 

}   Also meets SLO requirements 
 



System Design 
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Client 

  HBase 

HDFS 

GET 

lookup 

READ READ DATA 

Process 

RESPONSE 
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Client 

  HBase 

HDFS 

RPC Handlers 

RPC 
Handlers 

CPU Usage 

Disk Usage 
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Client 

  HBase 

HDFS 

RPC Handlers 

RPC 
Handlers 

CPU Usage 

Disk Usage 

1st –level -Scheduler 

1st –level -Scheduler 

•  Responsible for 
scheduling at single 
resource (disk, cpu etc) 

•  Built into RPC layer of 
each software 
component 
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Client 

  HBase 

HDFS 

RPC Handlers 

RPC 
Handlers 

CPU Usage 

Disk Usage 

1st –level -Scheduler 

1st –level -Scheduler 

2nd –level-Scheduler 

•  Gets perf. Metrics 
from 1st –level-
schedulers. 

•  Coordinates the 
resource allocation at 
1st –level-schedulers. 

•  Enforces SLOs 



System Design 
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} Add scheduling points within the 
system 

} Dynamically adjust allocations to 
meet SLO requirements. 

} Evaluated on HBase/HDFS system. 



Schedulers : Overview 
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}  First-Level Schedulers 
}  Give control over underlying hardware resource : cpu, disk 
}  Implemented at different layers of software stack (HBase, 

HDFS) 

}  Second-Level Scheduler 
}  Coordinates first-level schedulers to decide allocations 
}  Enforces SLO requirements 



System Design 
First-Level Schedulers 
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} Provide effective control over the 
underlying hardware – cpu, disk etc. 

} Coordinate with second-level-
scheduler 



System Design 
First-Level Schedulers 
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} Effective scheduler requirements 
}   Differentiated Scheduling 
}   Split large requests 
}   Control number of outstanding 

requests 



System Design 
First-Level Schedulers – Differentiated Scheduling 
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}  FIFO Scheduling Scheme 
}  Problems 
}  Unfairness with a single FIFO queue 
}  Front-end requests block behind 
   batch requests 

}  Solution :  
}  Separate queues for both 
    classes of applications 
 

 

HBase/
HDFS 

OS 



System Design 
First-Level Schedulers – Differentiated Scheduling 
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}  Schedule based on allocations 
   set by the 2nd –level scheduler 
}  Allocations :  

}  Proportional share allocation 
}  Reservations  

}  Problems: 
}  Large requests might tie up resources 
}  Requests can be non-prememptible 

}  Solution : split large requests 

HBase/
HDFS 

OS 



System Design 
First-Level Schedulers – Splitting large requests 
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}  Split large requests into multiple chunks 
}  Only wait for a chunk than an entire  
    large request 
}  Tradeoff : 

}  Lower latency but lesser throughput 

}  For the experiments performed, 64KB 
chunk size was found to be optimal 

HBase/
HDFS 

OS 



System Design 
First-Level Schedulers – Limiting outstanding requests 

4/11/13 Anirudh Ravula | UIUC | CS 525 27 

}  A device can only handle a certain number of 
concurrent executions 

}  Need to make sure the thread pool size at HBase/
HDFS is optimal 
}  Not overwhelming the device 
}  Not underloading the device  
 



System Design 
First-Level Schedulers – Limiting outstanding requests 
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}  TCP congestion control technique : AIMD (additive 
increase multiplicative decrease) 
}  Periodically determine the device latency 
}  If device underloaded, additively increase # of threads 
}  If device overloaded, multiplicatively decrease # of threads 
}  Claim : converges in general case 



System Design 
Second-Level Scheduler 
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}  Decides allocation at first-level schedulers 
}  Collects performance and queue occupancy metrics from first-

level schedulers. 
}  Every interval (10 secs) – uses these metrics to decide 

scheduling allocations at first-level schedule 
}  Enforces front-end client’s SLOs. 



System Design 
Second-Level Scheduler 
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}   2 phases in allocation  
} SLO Compliance-based 

} Adjusts allocations at HDFS. 
} Queue Occupancy-based 

} Adjusts HBase allocation based on queue 
occupancy at HDFS and HBase 



System Design 
Second-Level Scheduler : SLO Compliance-Based Phase 
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}  Adjusts HDFS allocations 
}  Disk is the bottleneck in storage workloads 
}  Clients performance < SLO 

}  Increase allocation when performance < SLO 

}  However, if client’s performance is very good 
}  Decrease allocation 

 



System Design 
Second-Level Scheduler : Queue Occupancy-Based Phase 
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}  Disk bottleneck workloads. But HBase can be bottleneck 
too (processing of get requests at HBase can be 
expensive) 

}  HBase can throttle HDFS 
}  Balance HBase/HDFS allocation 
}  Queue occupancy metric: 

}  % of time a client’s requests is waiting in the queue at a 
resource 

}  Increase allocation when more queuing at HBase  
}  Decrease allocation when more queuing at HDFS 



Evaluation   
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}  Several challenging consolidated workload scenarios 
}  Yahoo! Cloud Serving Benchmark (YCSB) clients to generate 

simulated front-end and batch load. 
}  Front-end clients – configured to make single-row requests 

(8KB data) 
}  Batch MapReduce clients configured to make 500-row scans 

(4MB data) 
}  C1.xlarge EC2 instances 



Evaluation : Diurnal Workload Scenario 
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}  Traces obtained from a web-server workload of an 
“industrial partner” 

}  Front-end running web serving workload 
}  Batch client running at max throughput 

}  Goals  
}  Evaluate ability to adapt to dynamic workload patterns 
}  Evaluate latency v/s throughput trade-off 



Evaluation : Diurnal Workload Scenario 
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    3x difference 

Front-end throughput 
according to diurnal pattern 



Evaluation : Diurnal Workload Scenario 
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Front-end 
99th SLO  
(in ms) 

% of requests 
meeting 
latency 
requirements 

Batch 
Throughput  

100 98.77 24.6 queries/s 

150 99.72 41.2 queries/s 

200 99.88 41.2 queries/s 

Details/Observations  
•  3 experiments with different front-end 

latency SLOs (100ms, 150ms, 200ms) 
•  Observe that we miss the 100ms SLO 

slightly. The 99th percentile latency for this 
experiment is at 105ms. 

•  Throughput increases as latency 
requirements relax.  Traditional in 
rotational storage media 

 

99% line 



Evaluation : Diurnal Workload Scenario 
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                Second-level scheduler actions at HBase and HDFS for 100ms SLO 

SLO compliance-based algorithm Queue occupancy-based algorithm 



Evaluation : Spike Workload Scenario  
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}  Goal – evaluate the ability of the system to deal with 
sudden traffic spikes 

The spike workload considered for 
the experiment 



Evaluation : Spike Workload Scenario  
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Front-end latency 
SLO (ms) 

Batch Throughput 

100 22.9 queries/s 

150 38.4 queries/s 

200 45 queries/s 

Observations 
•  3 experiments with different front-

end latency SLOs (100ms, 150ms, 
200ms) 

•  Observe that we miss the 100ms 
SLO slightly. The 99th percentile 
latency for this experiment is at 
107ms. 

•  Throughput increases as latency 
requirements relax.  Traditional in 
rotational storage media 

•  200 ms SLO achieves higher 
throughput than diurnal case.  

 

99% line 



Evaluation : Convergence Time 
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Workload : 
Front-End workload : 100 qps + 
Unthrottled batch client 
Latency SLO placed: 150 ms 99th 
percentile 
Scheduler Interval : 10s 

Observations 
•  40 secs to fall below SLO 
•  150 secs to stabilize. 
 

Convergence for dynamic 
workloads like diurnal? 



Evaluation : Analytics 
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}  20-node EC2 cluster  
}  Front-end YCSB client running diurnal pattern 
}  Batch MapReduce scanning over 386GB data 
 
}  Goals: 

}  Quantifying benefits of consolidating separate front-end and 
backend storage clusters 

}  Evaluate analytics time and provisioning cost 
}  Evaluate SLO compliance 



Evaluation : Analytics 
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Performance Gains: 
1.7x speedup +  
50% provisioning cost 



Evaluation : Summary 
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} Can adapt to changing workload pattern 
} Can adapt to spike workload pattern 
} Can adjust SLOs to give control over 

latency v/s throughput tradeoff 
} Performance: 

}  1.7 x speedup in batch/analytics jobs 
}  50% provisioning cost 



Discussion 
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}  Convergence times on dynamic workload? Is Cake guaranteed 
to converge?  

}  SLOs on throughput? 
}  No experiments on write workloads. Some SLOs were 

violated for read requests. They could be more severe for 
writes 

}  Extensibility to new storage abstractions? 
}  Not possible to implement 1st level scheduling criteria at all 

layers. Chunking not applied at HBase   
}  Future Work : SLO admission control, Application-level SLOs, 

use of SSDs, parameter tuning, multiple SLOs  
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Resource Demands in a Datacenter	
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One month (Oct 2010) trace of CPU and Memory demands���

2000-node Hadoop cluster at Facebook	





Schedulers in Practice	


•  Slot based schedulers	



• Allocate resources at the granularity of slots	



•  Slot is a fixed fraction of a node	



• Agnostic of user demand heterogeneity	



•  Example	



• Quincy (Dryad)	



• Hadoop’s Fair Scheduler	



• Outcome?	



• Underutilization	



• Thrashing	



• Users can game the system	
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It really happens!	


• Users game the system (Not strategy-proof)	



• Yahoo! Hadoop cluster allocated more slots for Reduce	



• User launched all his jobs as long reduce phases	



• A “Big” search company provided dedicated machines for 
jobs that had high utilization	



• Users inserted artificial infinite loops	



• Underutilization and Over-utilization	



• CDF of demand to slot ratio ���
in the Facebook example.	



ratio < 1 : Underutilizing	



ratio > 1 : Over-utilizing	
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It really happens!	


• Users game the system (Not strategy-proof)	



• Yahoo! Hadoop cluster allocated more slots for Reduce	



• User launched all his jobs as long reduce phases	



• A “Big” search company provided dedicated machines for 
jobs that had high utilization	



• Users inserted artificial infinite loops	



• Underutilization and Over-utilization	



• CDF of demand to slot ratio ���
in the Facebook example.	



ratio < 1 : Underutilizing	



ratio > 1 : Over-utilizing	
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60% tasks need more CPU	


95% had atleast double of what really required	





Problem Definition	



• How to 	



• Fairly Share 	



• Multiple type of resources 	



• Among	



• Different Users	



• When users have 	



• Heterogeneous demands	
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Fairness Policy	


• Sharing incentive	



• Each user should get at-least 1/n fraction of the cluster	



• Strategy-proof	



• One cannot ‘cheat’ by lying about demand	



• Envy-free	



• User should not prefer allocation of the other	



• Pareto-efficiency	



• Cannot increase allocation of a user without the expense 
of another	





• Single resource fairness	



• Reduce to max-min fairness in single resource scenario	



• Bottleneck fairness	



• Reduce to max-min on bottleneck resource if it is the only 
dominant resource	



• Population monotonicity	



• A user leaves è Other users allocation do not decrease	



• Resource monotonicity	



• Resource added è No users allocation decrease	
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Fairness Policy	





Single Resource Fairness	


• Max-Min Fairness strategy	



• Allocate chunks in the order of increasing demand	



• Nobody gets more than what it asks	



• All unsatisfied demands get an equal share	
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*Animation adapted from https://theone.ece.cmu.edu/drupal/sites/default/files/papers/Dominant%20Resource%20Fairness.pptx  	
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try to approximate Max-Min Fairness	





Single Resource Fairness	


• Max-Min Fairness strategy	



• Allocate chunks in the order of increasing demand	



• Nobody gets more than what it asks	



• All unsatisfied demands get an equal share	
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Maximizes the Minimum 
share of the unsatisfied ones	



Round Robin, TCP, Fair Queueing, etc. all 
try to approximate Max-Min Fairness	



Only “reasonable” mechanism with Sharing 
incentive and Strategy-proof properties	





Max-Min Fairness	



• Multiple Resource	



• 2 resources: CPUs & memory	



• User 1 wants <1 CPU, 4 GB> per task	



• User 2 wants <3 CPU, 1 GB> per task	



• What is a fair allocation?	



• Users have tasks according to a demand vector	



• Not needed in practice, can simply measure actual consumption	



• Assume divisible resources	



CPU 

100% 

50% 

0% 
mem 

 ?       ?	



Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13,	


           http://www.eecs.berkeley.edu/~kubitron/cs262	
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• Asset Fairness	



• Equalize each user’s sum of resource shares	



• Cluster with 70 CPUs, 70 GB RAM	


•  U1 needs <2 CPU, 2 GB RAM> per task	



•  U2 needs <1 CPU, 2 GB RAM> per task	



• Asset fairness yields	



•  U1: 15 tasks: 	

30 CPUs, 30 GB (∑=60)	



•  U2: 20 tasks:   	

20 CPUs, 40 GB (∑=60)	



A Natural Policy: Asset Fairness	



CPU	



User 1	

 User 2	



100%	



50%	



0%	


RAM	



43%	



57%	



43%	



28%	
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Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13,	


           http://www.eecs.berkeley.edu/~kubitron/cs262	



	





• Asset Fairness	



• Equalize each user’s sum of resource shares	



• Cluster with 70 CPUs, 70 GB RAM	


•  U1 needs <2 CPU, 2 GB RAM> per task	



•  U2 needs <1 CPU, 2 GB RAM> per task	



• Asset fairness yields	



•  U1: 15 tasks: 	

30 CPUs, 30 GB (∑=60)	



•  U2: 20 tasks:   	

20 CPUs, 40 GB (∑=60)	



A Natural Policy: Asset Fairness	



CPU	



User 1	

 User 2	



100%	



50%	



0%	


RAM	



43%	



57%	



43%	



28%	



Problem	


User 1 has < 50% of both CPUs and RAM	


	



Better off in a separate cluster with 50% of the 
resources	
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Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13,	


           http://www.eecs.berkeley.edu/~kubitron/cs262	



	





Dominant Resource Fairness	


• A user’s dominant resource is the resource she has the biggest 

share of	



• Example: 	



	

Total resources:  	

<10 CPU, 	

4 GB>	



	

User 1’s allocation: 	

<2 CPU, 	

1 GB> 	



	

Dominant resource is memory as 1/4 > 2/10 (1/5)	



• A user’s dominant share is the fraction of the dominant 
resource she is allocated	


• User 1’s dominant share is 25% (1/4)	
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Dominant Resource Fairness	


Example: 	



	

Total resources:  	

<9 CPU, 18 GB>	



	

User 1 demand: 	

 <1 CPU, 4 GB> dominant res: mem	



	

User 2 demand: 	

 <3 CPU, 1 GB> dominant res: CPU	



	



19	



max(x, y)
s.t
x + 3y ≤ 9
4x + y ≤18
2x
9

= y
3

∴ x = 3, y = 2



Dominant Resource Fairness	


Example: 	



	

Total resources:  	

<9 CPU, 18 GB>	



	

User 1 demand: 	

 <1 CPU, 4 GB> dominant res: mem	



	

User 2 demand: 	

 <3 CPU, 1 GB> dominant res: CPU	
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max(x, y)
s.t
x + 3y ≤ 9
4x + y ≤18
2x
9

= y
3

∴ x = 3, y = 2

CPU Constraint	



Memory Constraint	



DRF Equalize	



User 1:  <3 CPU, 12 GB>, User2: <6 CPU, 2 GB> 	



x tasks from User1, y tasks from User2	





Dominant Resource Fairness	


Example: 	



	

Total resources:  	

<9 CPU, 18 GB>	



	

User 1 demand: 	

 <1 CPU, 4 GB> dominant res: mem	



	

User 2 demand: 	

 <3 CPU, 1 GB> dominant res: CPU	



	


User 1	



User 2	



100%	



50%	



0%	


CPU	



(9 total)	


mem	



(18 total)	



3 CPUs	

 12 GB	



6 CPUs	

 2 GB	



66%	



66%	
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Online DRF Scheduler	



	



•  Easy computation	



•  O(log n) time per decision using binary heaps	



•  How to determine demand vectors?	



Whenever there are available resources and tasks to run:	


	



Schedule a task to the user with smallest dominant share 	
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Alternative: CEEI	


• Approach	



• Set prices for each good	



• Let users buy what they want	



• How do we determine the right prices for different goods?	



• Let the market determine the prices	



• Competitive Equilibrium from Equal Incomes (CEEI) 	



• Give each user 1/n of every resource 	



• Let users trade in a perfectly competitive market	



• Not strategy-proof!	
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CEEI	
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max(x.y)
s.t
x + 3y ≤ 9
4x + y ≤18

∴ x = 45
11
, y = 18

11



CEEI	
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max(x.y)
s.t
x + 3y ≤ 9
4x + y ≤18

∴ x = 45
11
, y = 18

11

CPU Constraint	



Memory Constraint	



User 1:  <4.1 CPU, 16.4 GB>, 
User2: <4.9 CPU, 1.6 GB> 	



Product of Nash Products	





DRF vs CEEI	


•  User 1: <1 CPU, 4 GB>  User 2: <3 CPU, 1 GB>	



•  DRF more fair, CEEI better utilization	
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User 1: <1 CPU, 4 GB>  User 2: <3 CPU, 2 GB>	



User 2 increased her share of both CPU and memory	





DRF vs CEEI	


•  User 1: <1 CPU, 4 GB>  User 2: <3 CPU, 1 GB>	



•  DRF more fair, CEEI better utilization	
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User 1: <1 CPU, 4 GB>  User 2: <3 CPU, 2 GB>	



User 2 increased her share of both CPU and memory	





DRF vs Asset Fairness vs CEEI	


• Resources <1000 CPUs, 1000 GB>	



• 2 users A: <2 CPU, 3 GB> and B: <5 CPU, 1 GB>	



User A	



User B	



a) DRF	

 b) Asset Fairness	



CPU	

 Mem	

 CPU	

 Mem	

 CPU	

 Mem	
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c) CEEI	





Comparison	


Property	

 Asset Fairness	

 CEEI	

 DRF	


Sharing Incentive	

 ✗	

 ✓	

 ✓	


Strategy-Proofness	

 ✓	

 ✗	

 ✓	


Envy-freeness	

 ✓	

 ✓	

 ✓	


Pareto efficiency	

 ✓	

 ✓	

 ✓	


Single Resource 
Fairness	



✓	

 ✓	

 ✓	


Bottleneck Fairness	

 ✗	

 ✓	

 ✓	


Population 
Monotonicity	



✓	

 ✗	

 ✓	


Resource 
Monotonicity	



✗	

 ✗	

 ✗	
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Evaluation	



• Micro-experiments	



•  48 node Mesos cluster on EC2	



•  Extra large instances with 4 CPU cores and 15 GB of RAM	



•  Two jobs, one CPU intensive, one memory intensive	



• Compare DRF with current Hadoop scheduler	



• Macro-benchmark through simulations	



•  Simulate Facebook trace with DRF and current Hadoop 
scheduler	





Micro Experiments	
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Job1’s Share	



Job 2’s share	



Dominant Share	





Hadoop Fair Scheduler Experiments	



	



• Hadoop Fair Scheduler/capacity/Quincy	



• Each machine consists of k slots (e.g. k=2~6)	



• Run at most one task per slot	



• apply max-min fairness to slot-count	
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Micro Experiments	
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Number of large jobs completed	



Number of small jobs completed	
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Micro Experiments	
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Number of large jobs completed	



Number of small jobs completed	
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Thrashing	



Low Utilization	



Thrashing	





Micro Experiments	
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Average response time for large jobs	



Average response time for small jobs	
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Micro Experiments	
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Average response time for large jobs	



Average response time for small jobs	
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Macro Benchmarks	
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Average reduction of the completion times for different job sizes for a 
trace from a Facebook Hadoop cluster	





Utilization	
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CPU and Memory utilization for DRF and slot fairness for a trace from 
Facebook Hadoop Cluster	





Discussions	


•  Fair sharing vs. Meeting Deadlines? (Indy)	



•  Is the job throughput only concern?	



•  What is the cloud specific requirement behind this research?	



•  Why don’t we require / apply this fairness in a single machine OS?	



•  Is multi-tenancy of a cloud the only reason for this scheduling?	



•  Only Memory and CPU ! IO, Network, Disk is absent from experiments?	



•  Hadoop stores the intermediate results in persistence storage 	



•  They are considering exclusive resources. What about shared resources in the Datacenter? How to 
share the network?	



•  Multi-Resource Fair Queueing for Packet Processing: SIGCOMM 2012	



•  Schedule multiple resources in a Middleboxes  (IDS, VPN, Firewall, Wan Optimizer etc)	



•  What about the task placement constraints?	



•  Integrate DRF with Hadoop?	



•  Leaves some resource unutilized	



•  Adding more resources to the system may decrease the allocations for existing users.	



•  Proved in the paper that satisfying everything is not possible	
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