Cake Enabling High-level SLOs on Shared Storage Systems

AMPLab – UCBerkeley

Cake

- Coordinated (multiresource) 2-level scheduling system for shared storage systems
- Enforces SLO requirements of the clients.

Cake

Service Level Objective

Performance Metric (Ex: 99th percentile latency) of

Requirement (Ex:100 ms)

for

Type of Request (Ex: get request)

Service Level Objective (Examples)

Latency SLO:

> 99th percentile latency of 100ms for get requests

Throughput SLO:

- I00 8KB scan requests per second
- 90% of calls to the helpdesk should be answered in less than 20 seconds...

Cake Coordinated 2-level scheduling system for shared storage systems

- Provides scheduling at multiple resources cpu, disk.
- Scheduling at different resources is coordinated.Why?

Cake

Coordinated 2-level scheduling system for

Motivation

- Separate storage systems for both the classes of applications.
 - Hard to multiplex front-end (web server) storage and backend (analytics) storage.
 - Different workloads and requirements for both these classes.
 - We don't want to violate SLOs of webclients.

Anirudh Ravula | UIUC | CS 525 4/11/13

Motivation

Front End

Backend

Cake in one slide

Observation:

- Separate storage systems for front-end and back-end applications
- Problem:
 - Hard to multiplex latency sensitive applications and throughput-oriented applications.
 - Why? inherent latency v/s throughput tradeoff in rotational media storage

Solution:

- Have separate queue each for latency sensitive applications requests and throughput-oriented applications requests
- Schedule them by giving higher priority for latency sensitive applications so that SLOs are met

Combine both the workloads

- consolidate separate front-end and batch storage clusters
- Meet front-end latency requirements
 Then maximize batch throughput

Cake Benefits

Recap

Cake

- Coordinated mutliresource scheduler
- Can consolidate storage systems for different types of workloads (latency sensitive vs throughput-oriented)
- Also meets SLO requirements

Anirudh Ravula | UIUC | CS 525 4/11/13

Anirudh Ravula | UIUC | CS 525 4/11/13

Anirudh Ravula | UIUC | CS 525 4/11/13

Anirudh Ravula | UIUC | CS 525 4/11/13

- Add scheduling points within the system
- Dynamically adjust allocations to meet SLO requirements.
- Evaluated on HBase/HDFS system.

Schedulers : Overview

- First-Level Schedulers
 - Give control over underlying hardware resource : cpu, disk
 - Implemented at different layers of software stack (HBase, HDFS)
- Second-Level Scheduler
 - Coordinates first-level schedulers to decide allocations
 - Enforces SLO requirements

System Design First-Level Schedulers

Provide effective control over the underlying hardware – cpu, disk etc. Coordinate with second-level-scheduler

System Design First-Level Schedulers

Effective scheduler requirements

- Differentiated Scheduling
- Split large requests
- Control number of outstanding requests

System Design First-Level Schedulers – Differentiated Scheduling

- FIFO Scheduling Scheme
- Problems
 - Unfairness with a single FIFO queue
 - Front-end requests block behind batch requests
- Solution :
 - Separate queues for both classes of applications

System Design First-Level Schedulers – Differentiated Scheduling

- Schedule based on allocations set by the 2nd –level scheduler
- Allocations :
 - Proportional share allocation
 - Reservations
- Problems:
 - Large requests might tie up resources
 - Requests can be non-prememptible
- Solution : split large requests

Only wait for a chunk than an entire large request

First-Level Schedulers – Splitting large requests

Tradeoff :

System Design

Lower latency but lesser throughput

Split large requests into multiple chunks

For the experiments performed, 64KB chunk size was found to be optimal

System Design First-Level Schedulers – Limiting outstanding requests

- A device can only handle a certain number of concurrent executions
- Need to make sure the thread pool size at HBase/ HDFS is optimal
 - Not overwhelming the device
 - Not underloading the device

System Design First-Level Schedulers – Limiting outstanding requests

- TCP congestion control technique : AIMD (additive increase multiplicative decrease)
 - Periodically determine the device latency
 - If device underloaded, additively increase # of threads
 - If device overloaded, multiplicatively decrease # of threads
 - Claim : converges in general case

System Design Second-Level Scheduler

- Decides allocation at first-level schedulers
 - Collects performance and queue occupancy metrics from firstlevel schedulers.
 - Every interval (10 secs) uses these metrics to decide scheduling allocations at first-level schedule
 - Enforces front-end client's SLOs.

System Design Second-Level Scheduler

2 phases in allocation
 SLO Compliance-based
 Adjusts allocations at HDFS.

Queue Occupancy-based

 Adjusts HBase allocation based on queue occupancy at HDFS and HBase

Second-Level Scheduler : SLO Compliance-Based Phase

- Adjusts HDFS allocations
- Disk is the bottleneck in storage workloads
- Clients performance < SLO</p>
 - Increase allocation when performance < SLO</p>
- However, if client's performance is very good
 - Decrease allocation

System Design Second-Level Scheduler : Queue Occupancy-Based Phase

- Disk bottleneck workloads. But HBase can be bottleneck too (processing of get requests at HBase can be expensive)
- HBase can throttle HDFS
- Balance HBase/HDFS allocation
- Queue occupancy metric:
 - % of time a client's requests is waiting in the queue at a resource
- Increase allocation when more queuing at HBase
- Decrease allocation when more queuing at HDFS

Evaluation

- Several challenging consolidated workload scenarios
- Yahoo! Cloud Serving Benchmark (YCSB) clients to generate simulated front-end and batch load.
- Front-end clients configured to make single-row requests (8KB data)
- Batch MapReduce clients configured to make 500-row scans (4MB data)
- CI.xlarge EC2 instances

Evaluation : Diurnal Workload Scenario

- Traces obtained from a web-server workload of an "industrial partner"
- Front-end running web serving workload
- Batch client running at max throughput

Goals

- Evaluate ability to adapt to dynamic workload patterns
- Evaluate latency v/s throughput trade-off

Evaluation : Diurnal Workload Scenario

Anirudh Ravula | UIUC | CS 525 4/11/13

Evaluation : Diurnal Workload Scenario

99% line

Details/Observations

- 3 experiments with different front-end latency SLOs (100ms, 150ms, 200ms)
- Observe that we miss the 100ms SLO slightly. The 99th percentile latency for this experiment is at 105ms.
- Throughput increases as latency requirements relax. Traditional in rotational storage media

Front-end 99 th SLO (in ms)	% of requests meeting latency requirements	Batch Throughput
100	98.77	24.6 queries/s
150	99.72	41.2 queries/s
200	99.88	41.2 queries/s

Anirudh Ravula | UIUC | CS 525 4/11/13
Evaluation : Diurnal Workload Scenario

Second-level scheduler actions at HBase and HDFS for 100ms SLO

SLO compliance-based algorithm

Queue occupancy-based algorithm

Anirudh Ravula | UIUC | CS 525 4/11/13

Evaluation : Spike Workload Scenario

 Goal – evaluate the ability of the system to deal with sudden traffic spikes

The spike workload considered for the experiment

Anirudh Ravula | UIUC | CS 525 4/11/13

Evaluation : Spike Workload Scenario

99% line

Observations

- 3 experiments with different frontend latency SLOs (100ms, 150ms, 200ms)
- Observe that we miss the 100ms SLO slightly. The 99th percentile latency for this experiment is at 107ms.
- Throughput increases as latency requirements relax. Traditional in rotational storage media
- 200 ms SLO achieves higher throughput than diurnal case.

Front-end latency SLO (ms)	Batch Throughput
100	22.9 queries/s
150	38.4 queries/s
200	45 queries/s

Evaluation : Convergence Time

Workload :

Convergence for dynamic workloads like diurnal?

Evaluation : Analytics

- > 20-node EC2 cluster
- Front-end YCSB client running diurnal pattern
- Batch MapReduce scanning over 386GB data
- Goals:
 - Quantifying benefits of consolidating separate front-end and backend storage clusters
 - Evaluate analytics time and provisioning cost
 - Evaluate SLO compliance

Evaluation : Analytics

Performance Gains: 1.7x speedup + 50% provisioning cost

Scenario	Time	Speedup	Nodes
Unconsolidated	1722s	1.0x	40
Consolidated	1030s	1.7x	20

Front-end	% Requests
99 th SLO	Meeting SLO
100ms	99.95%

Evaluation : Summary

- Can adapt to changing workload pattern
- Can adapt to spike workload pattern
- Can adjust SLOs to give control over latency v/s throughput tradeoff
- Performance:
 - I.7 x speedup in batch/analytics jobs
 - 50% provisioning cost

Discussion

- Convergence times on dynamic workload? Is Cake guaranteed to converge?
- SLOs on throughput?
- No experiments on write workloads. Some SLOs were violated for read requests. They could be more severe for writes
- Extensibility to new storage abstractions?
 - Not possible to implement Ist level scheduling criteria at all layers. Chunking not applied at HBase
- Future Work : SLO admission control, Application-level SLOs, use of SSDs, parameter tuning, multiple SLOs

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica * NSDI 2011

* University of California, Berkeley, CA

Presented By Md Tanvir Al Amin University of Illinois at Urbana-Champaign, IL

Resource Demands in a Datacenter

One month (Oct 2010) trace of **CPU** and **Memory** demands 2000-node Hadoop cluster at Facebook

Schedulers in Practice

- Slot based schedulers
 - Allocate resources at the granularity of **slots**
 - Slot is a **fixed fraction** of a node
 - Agnostic of user demand heterogeneity
- Example
 - Quincy (Dryad)
 - Hadoop's Fair Scheduler
- Outcome?
 - Underutilization
 - Thrashing
 - Users can game the system

It really happens!

Users game the system (Not strategy-proof)

- Yahoo! Hadoop cluster allocated more slots for Reduce
 - User launched all his jobs as long reduce phases
- A 'Big' search company provided dedicated machines for jobs that had high utilization
 - Users inserted artificial infinite loops
- Underutilization and Over-utilization
 - CDF of demand to slot ratio in the Facebook example.
 ratio < I : Underutilizing
 ratio > I : Over-utilizing

It really happens!

Users game the system (Not strategy-proof)

- Yahoo! Hadoop cluster allocated more slots for Reduce
 - User launched all his jobs as long reduce phases
- A "Big" search company provided dedicated machines for jobs that had high utilization 60% tasks need more CPU
 - U95% had atleast double of what really required
- Underutilization and Over-utilization
 - CDF of demand to slot ratio in the Facebook example.
 ratio < I : Underutilizing
 ratio > I : Over-utilizing

Problem Definition

- How to
 - Fairly Share
 - Multiple type of resources
 - Among
 - Different Users
 - When users have
 - Heterogeneous demands

Fairness Policy

- Sharing incentive
 - Each user should get at-least 1/n fraction of the cluster
- Strategy-proof
 - One cannot 'cheat' by lying about demand
- Envy-free
 - User should not prefer allocation of the other
- Pareto-efficiency
 - Cannot increase allocation of a user without the expense of another

Fairness Policy

- Single resource fairness
 - Reduce to max-min fairness in single resource scenario
- Bottleneck fairness
 - Reduce to max-min on bottleneck resource if it is the only dominant resource
- Population monotonicity
- Resource monotonicity
 - Resource added → No users allocation decrease

Max-Min Fairness strategy

- Allocate chunks in the order of increasing demand
- Nobody gets more than what it asks
- All unsatisfied demands get an equal share

Max-Min Fairness strategy

- Allocate chunks in the order of increasing demand
- Nobody gets more than what it asks
- All unsatisfied demands get an equal share

Max-Min Fairness strategy

- Allocate chunks in the order of increasing demand
- Nobody gets more than what it asks
- All unsatisfied demands get an equal share

Max-Min Fairness strategy

- Allocate chunks in the order of increasing demand
- Nobody gets more than what it asks
- All unsatisfied demands get an equal share

Max-Min Fairness strategy

- Allocate chunks in the order of increasing demand
- Nobody gets more than what it asks
- All unsatisfied demands get an equal share

Max-Min Fairness strategy

- Allocate chunks in the order of increasing demand
- Nobody gets more than what it asks
- All unsatisfied demands get an equal share

Only "reasonable" mechanism with Sharing incentive and Strategy-proof properties

> Round Robin, TCP, Fair Queueing, etc. all try to approximate Max-Min Fairness

Maximizes the Minimum share of the unsatisfied ones

Max-Min Fairness

Multiple Resource

- 2 resources: CPUs & memory
- User I wants < I CPU, 4 GB> per task
- User 2 wants <3 CPU, I GB> per task
- What is a fair allocation?

- Users have tasks according to a demand vector
 - Not needed in practice, can simply measure actual consumption
 - Assume divisible resources

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13, 15 http://www.eecs.berkeley.edu/~kubitron/cs262

A Natural Policy: Asset Fairness

- Asset Fairness
 - Equalize each user's sum of resource shares
- Cluster with 70 CPUs, 70 GB RAM
 - U_1 needs <2 CPU, 2 GB RAM> per task
 - U_2 needs <1 CPU, 2 GB RAM> per task
- Asset fairness yields
 - U_1 : 15 tasks: 30 CPUs, 30 GB (Σ =60)
 - U₂: 20 tasks: 20 CPUs, 40 GB (Σ=60)

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13, 16 http://www.eecs.berkeley.edu/~kubitron/cs262

A Natural Policy: Asset Fairness

- Asset Fairness
 - Equalize each user's sum of resource shares

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13, 7 http://www.eecs.berkeley.edu/~kubitron/cs262

- A user's dominant resource is the resource she has the biggest share of
 - Example:

Total resources: <10 CPU, 4 GB>

User I's allocation: <2 CPU, I GB>

Dominant resource is memory as 1/4 > 2/10 (1/5)

- A user's **dominant share** is the fraction of the dominant resource she is allocated
 - User I's dominant share is 25% (1/4)

Example:

Total resources:

User I demand:

User 2 demand:

 $\max(x,y)$

st.

 $x + 3y \le 9$ $4x + y \le 18$ $\frac{2x}{9} = \frac{y}{3}$ $\therefore x = 3, y = 2$ <9 CPU, 18 GB> <1 CPU, 4 GB> dominant res: mem <3 CPU, 1 GB> dominant res: CPU

Example:

20

Example:

Total resources:

User I demand:

User 2 demand:

<9 CPU, 18 GB> <1 CPU, 4 GB> dominant res: mem <3 CPU, 1 GB> dominant res: CPU

Online DRF Scheduler

Whenever there are available resources and tasks to run:

Schedule a task to the user with smallest dominant share

- Easy computation
 - O(log n) time per decision using binary heaps
- How to determine demand vectors?

Alternative: CEEI

- Approach
 - Set prices for each good
 - Let users buy what they want
- How do we determine the right prices for different goods?
 - Let the market determine the prices
- Competitive Equilibrium from Equal Incomes (CEEI)
 - Give each user I/n of every resource
 - Let users trade in a perfectly competitive market
- Not strategy-proof!

CEEI

$\max(x.y)$ st $x + 3y \le 9$ $4x + y \le 18$ $\therefore x = \frac{45}{11}, y = \frac{18}{11}$

CEEI

DRF vs CEEI

• User I: < I CPU, 4 GB> User 2: <3 CPU, I GB>

DRF more fair, CEEI better utilization

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13, 26 http://www.eecs.berkeley.edu/~kubitron/cs262

DRF vs CEEI

• User I: < I CPU, 4 GB> User 2: <3 CPU, I GB>

DRF more fair, CEEI better utilization

User I: < I CPU, 4 GB> User 2: <3 CPU, 2 GB>

User 2 increased her share of both CPU and memory

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13, 27 http://www.eecs.berkeley.edu/~kubitron/cs262

DRF vs CEEI

• User I: < I CPU, 4 GB> User 2: <3 CPU, I GB>

DRF more fair, CEEI better utilization

User I: < I CPU, 4 GB> User 2: <3 CPU, 2 GB>

User 2 increased her share of both CPU and memory

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13, 28 http://www.eecs.berkeley.edu/~kubitron/cs262
DRF vs Asset Fairness vs CEEI

- Resources <1000 CPUs, 1000 GB>
- 2 users A: <2 CPU, 3 GB> and B: <5 CPU, 1 GB>

Comparison

Property	Asset Fairness	CEEI	DRF
Sharing Incentive	X	\checkmark	\checkmark
Strategy-Proofness	\checkmark	×	\checkmark
Envy-freeness	\checkmark	\checkmark	\checkmark
Pareto efficiency	\checkmark	\checkmark	\checkmark
Single Resource Fairness	\checkmark	\checkmark	\checkmark
Bottleneck Fairness	X	\checkmark	\checkmark
Population Monotonicity	\checkmark	×	\checkmark
Resource Monotonicity	×	×	×

Evaluation

- Micro-experiments
 - 48 node Mesos cluster on EC2
 - Extra large instances with 4 CPU cores and 15 GB of RAM
 - Two jobs, one CPU intensive, one memory intensive
 - Compare DRF with current Hadoop scheduler
- Macro-benchmark through simulations
 - Simulate Facebook trace with DRF and current Hadoop scheduler

Job I's Share

Job 2's share

Dominant Share

Hadoop Fair Scheduler Experiments

- Hadoop Fair Scheduler/capacity/Quincy
 - Each machine consists of k slots (e.g. k=2~6)
 - Run at most one task per slot
 - apply max-min fairness to slot-count

Jobs finished

Jobs finished

Number of large jobs completed

Number of small jobs completed

Number of small jobs completed

Jobs finished

36

Macro Benchmarks

Average reduction of the completion times for different job sizes for a trace from a Facebook Hadoop cluster

Utilization

CPU and Memory utilization for DRF and slot fairness for a trace from Facebook Hadoop Cluster

Discussions

- Fair sharing vs. Meeting Deadlines? (Indy)
 - Is the job throughput only concern?
- What is the cloud specific requirement behind this research?
 - Why don't we require / apply this fairness in a single machine OS?
 - Is multi-tenancy of a cloud the only reason for this scheduling?
- Only Memory and CPU ! IO, Network, Disk is absent from experiments?
 - Hadoop stores the intermediate results in persistence storage
- They are considering exclusive resources. What about shared resources in the Datacenter? How to share the network?
 - Multi-Resource Fair Queueing for Packet Processing: SIGCOMM 2012
 - Schedule multiple resources in a Middleboxes (IDS, VPN, Firewall, Wan Optimizer etc)
- What about the task placement constraints?
- Integrate DRF with Hadoop?
- Leaves some resource unutilized
- Adding more resources to the system may decrease the allocations for existing users.
 - Proved in the paper that satisfying everything is not possible