
 Cake
Enabling High-level SLOs on Shared Storage Systems

 AMPLab – UCBerkeley

Introduction

4/11/13 Anirudh Ravula | UIUC | CS 525 2

} Cake
}  Coordinated (multiresource) 2-level

scheduling system for shared storage
systems

}  Enforces SLO requirements of the
clients.

Introduction

4/11/13 Anirudh Ravula | UIUC | CS 525 3

}  Cake
}  Coordinated 2-level scheduling system for

 shared storage systems

 2 classes of datacenter applications

Front End Web Server
User Facing

Latency Sensitive

Internal
Batch Analytics

Throughput-Oriented

Different workloads,
requirements

Service Level Objective

4/11/13 Anirudh Ravula | UIUC | CS 525 4

Performance Metric (Ex: 99th percentile latency)

 of
Requirement (Ex:100 ms)

 for
Type of Request (Ex: get request)

Service Level Objective (Examples)

4/11/13 Anirudh Ravula | UIUC | CS 525 5

}  Latency SLO:
}  99th percentile latency of 100ms for get requests

} Throughput SLO:
}  100 8KB scan requests per second

}  90% of calls to the helpdesk should be answered in less
than 20 seconds…

Introduction

4/11/13 Anirudh Ravula | UIUC | CS 525 6

}  Cake
}  Coordinated 2-level for
 shared storage systems

scheduling system

•  Schedules different types of requests received by
clients.

•  Grants access to a hardware resource – cpu, disk.
•  REMEMBER : It is a user-level scheduling system (on top

of OS scheduler)

Introduction

4/11/13 Anirudh Ravula | UIUC | CS 525 7

}  Cake
}  2-level scheduling system for
 shared storage systems

Coordinated

•  Provides scheduling at multiple
resources – cpu, disk.

•  Scheduling at different
resources is coordinated. Why?

Introduction

4/11/13 Anirudh Ravula | UIUC | CS 525 8

}  Cake
}  Coordinated 2-level scheduling system for

shared storage systems

•  Both classes of applications share a
distributed storage system – HBase, HDFS,
Cassandra etc.

Motivation

4/11/13 Anirudh Ravula | UIUC | CS 525 9

} Separate storage systems for both the
classes of applications.

} Hard to multiplex front-end (web server)
storage and backend (analytics) storage.

} Different workloads and requirements for
both these classes.

} We don’t want to violate SLOs of web-
clients.

Motivation

4/11/13 Anirudh Ravula | UIUC | CS 525 10

 Front End Backend

Motivation

4/11/13 Anirudh Ravula | UIUC | CS 525 11

 Front End Backend

UUU Users

Data

Analysis

Cake in one slide

4/11/13 Anirudh Ravula | UIUC | CS 525 12

}  Observation:
}  Separate storage systems for front-end and back-end

applications
}  Problem:

}  Hard to multiplex latency sensitive applications and
throughput-oriented applications.

}  Why? – inherent latency v/s throughput tradeoff in rotational
media storage

}  Solution:
}  Have separate queue each for latency sensitive applications

requests and throughput-oriented applications requests
}  Schedule them by giving higher priority for latency sensitive

applications so that SLOs are met

Cake Objectives

4/11/13 Anirudh Ravula | UIUC | CS 525 13

} Combine both the workloads
}  consolidate separate front-end and batch

storage clusters

} Meet front-end latency requirements

} Then maximize batch throughput

Cake Benefits

4/11/13 Anirudh Ravula | UIUC | CS 525 14

UUseU Users

Batch
Analysis

Consolidated

•  Lower cost of provisioning
•  Better cluster utilization
•  Improved performance.
•  Also meets SLOs

Recap

4/11/13 Anirudh Ravula | UIUC | CS 525 15

} Cake

} Coordinated mutliresource scheduler
} Can consolidate storage systems for different

types of workloads (latency sensitive vs
throughput-oriented)

}  Also meets SLO requirements

System Design

4/11/13 Anirudh Ravula | UIUC | CS 525 16

Client

 HBase

HDFS

GET

lookup

READ READ DATA

Process

RESPONSE

System Design

4/11/13 Anirudh Ravula | UIUC | CS 525 17

Client

 HBase

HDFS

RPC Handlers

RPC
Handlers

CPU Usage

Disk Usage

System Design

4/11/13 Anirudh Ravula | UIUC | CS 525 18

Client

 HBase

HDFS

RPC Handlers

RPC
Handlers

CPU Usage

Disk Usage

1st –level -Scheduler

1st –level -Scheduler

•  Responsible for
scheduling at single
resource (disk, cpu etc)

•  Built into RPC layer of
each software
component

System Design

4/11/13 Anirudh Ravula | UIUC | CS 525 19

Client

 HBase

HDFS

RPC Handlers

RPC
Handlers

CPU Usage

Disk Usage

1st –level -Scheduler

1st –level -Scheduler

2nd –level-Scheduler

•  Gets perf. Metrics
from 1st –level-
schedulers.

•  Coordinates the
resource allocation at
1st –level-schedulers.

•  Enforces SLOs

System Design

4/11/13 Anirudh Ravula | UIUC | CS 525 20

} Add scheduling points within the
system

} Dynamically adjust allocations to
meet SLO requirements.

} Evaluated on HBase/HDFS system.

Schedulers : Overview

4/11/13 Anirudh Ravula | UIUC | CS 525 21

}  First-Level Schedulers
}  Give control over underlying hardware resource : cpu, disk
}  Implemented at different layers of software stack (HBase,

HDFS)

}  Second-Level Scheduler
}  Coordinates first-level schedulers to decide allocations
}  Enforces SLO requirements

System Design
First-Level Schedulers

4/11/13 Anirudh Ravula | UIUC | CS 525 22

} Provide effective control over the
underlying hardware – cpu, disk etc.

} Coordinate with second-level-
scheduler

System Design
First-Level Schedulers

4/11/13 Anirudh Ravula | UIUC | CS 525 23

} Effective scheduler requirements
}  Differentiated Scheduling
}  Split large requests
}  Control number of outstanding

requests

System Design
First-Level Schedulers – Differentiated Scheduling

4/11/13 Anirudh Ravula | UIUC | CS 525 24

}  FIFO Scheduling Scheme
}  Problems
}  Unfairness with a single FIFO queue
}  Front-end requests block behind
 batch requests

}  Solution :
}  Separate queues for both
 classes of applications

HBase/
HDFS

OS

System Design
First-Level Schedulers – Differentiated Scheduling

4/11/13 Anirudh Ravula | UIUC | CS 525 25

}  Schedule based on allocations
 set by the 2nd –level scheduler
}  Allocations :

}  Proportional share allocation
}  Reservations

}  Problems:
}  Large requests might tie up resources
}  Requests can be non-prememptible

}  Solution : split large requests

HBase/
HDFS

OS

System Design
First-Level Schedulers – Splitting large requests

4/11/13 Anirudh Ravula | UIUC | CS 525 26

}  Split large requests into multiple chunks
}  Only wait for a chunk than an entire
 large request
}  Tradeoff :

}  Lower latency but lesser throughput

}  For the experiments performed, 64KB
chunk size was found to be optimal

HBase/
HDFS

OS

System Design
First-Level Schedulers – Limiting outstanding requests

4/11/13 Anirudh Ravula | UIUC | CS 525 27

}  A device can only handle a certain number of
concurrent executions

}  Need to make sure the thread pool size at HBase/
HDFS is optimal
}  Not overwhelming the device
}  Not underloading the device

System Design
First-Level Schedulers – Limiting outstanding requests

4/11/13 Anirudh Ravula | UIUC | CS 525 28

}  TCP congestion control technique : AIMD (additive
increase multiplicative decrease)
}  Periodically determine the device latency
}  If device underloaded, additively increase # of threads
}  If device overloaded, multiplicatively decrease # of threads
}  Claim : converges in general case

System Design
Second-Level Scheduler

4/11/13 Anirudh Ravula | UIUC | CS 525 29

}  Decides allocation at first-level schedulers
}  Collects performance and queue occupancy metrics from first-

level schedulers.
}  Every interval (10 secs) – uses these metrics to decide

scheduling allocations at first-level schedule
}  Enforces front-end client’s SLOs.

System Design
Second-Level Scheduler

4/11/13 Anirudh Ravula | UIUC | CS 525 30

}  2 phases in allocation
} SLO Compliance-based

} Adjusts allocations at HDFS.
} Queue Occupancy-based

} Adjusts HBase allocation based on queue
occupancy at HDFS and HBase

System Design
Second-Level Scheduler : SLO Compliance-Based Phase

4/11/13 Anirudh Ravula | UIUC | CS 525 31

}  Adjusts HDFS allocations
}  Disk is the bottleneck in storage workloads
}  Clients performance < SLO

}  Increase allocation when performance < SLO

}  However, if client’s performance is very good
}  Decrease allocation

System Design
Second-Level Scheduler : Queue Occupancy-Based Phase

4/11/13 Anirudh Ravula | UIUC | CS 525 32

}  Disk bottleneck workloads. But HBase can be bottleneck
too (processing of get requests at HBase can be
expensive)

}  HBase can throttle HDFS
}  Balance HBase/HDFS allocation
}  Queue occupancy metric:

}  % of time a client’s requests is waiting in the queue at a
resource

}  Increase allocation when more queuing at HBase
}  Decrease allocation when more queuing at HDFS

Evaluation

4/11/13 Anirudh Ravula | UIUC | CS 525 33

}  Several challenging consolidated workload scenarios
}  Yahoo! Cloud Serving Benchmark (YCSB) clients to generate

simulated front-end and batch load.
}  Front-end clients – configured to make single-row requests

(8KB data)
}  Batch MapReduce clients configured to make 500-row scans

(4MB data)
}  C1.xlarge EC2 instances

Evaluation : Diurnal Workload Scenario

4/11/13 Anirudh Ravula | UIUC | CS 525 34

}  Traces obtained from a web-server workload of an
“industrial partner”

}  Front-end running web serving workload
}  Batch client running at max throughput

}  Goals
}  Evaluate ability to adapt to dynamic workload patterns
}  Evaluate latency v/s throughput trade-off

Evaluation : Diurnal Workload Scenario

4/11/13 Anirudh Ravula | UIUC | CS 525 35

 3x difference

Front-end throughput
according to diurnal pattern

Evaluation : Diurnal Workload Scenario

4/11/13 Anirudh Ravula | UIUC | CS 525 36

Front-end
99th SLO
(in ms)

% of requests
meeting
latency
requirements

Batch
Throughput

100 98.77 24.6 queries/s

150 99.72 41.2 queries/s

200 99.88 41.2 queries/s

Details/Observations
•  3 experiments with different front-end

latency SLOs (100ms, 150ms, 200ms)
•  Observe that we miss the 100ms SLO

slightly. The 99th percentile latency for this
experiment is at 105ms.

•  Throughput increases as latency
requirements relax. Traditional in
rotational storage media

99% line

Evaluation : Diurnal Workload Scenario

4/11/13 Anirudh Ravula | UIUC | CS 525 37

 Second-level scheduler actions at HBase and HDFS for 100ms SLO

SLO compliance-based algorithm Queue occupancy-based algorithm

Evaluation : Spike Workload Scenario

4/11/13 Anirudh Ravula | UIUC | CS 525 38

}  Goal – evaluate the ability of the system to deal with
sudden traffic spikes

The spike workload considered for
the experiment

Evaluation : Spike Workload Scenario

4/11/13 Anirudh Ravula | UIUC | CS 525 39

Front-end latency
SLO (ms)

Batch Throughput

100 22.9 queries/s

150 38.4 queries/s

200 45 queries/s

Observations
•  3 experiments with different front-

end latency SLOs (100ms, 150ms,
200ms)

•  Observe that we miss the 100ms
SLO slightly. The 99th percentile
latency for this experiment is at
107ms.

•  Throughput increases as latency
requirements relax. Traditional in
rotational storage media

•  200 ms SLO achieves higher
throughput than diurnal case.

99% line

Evaluation : Convergence Time

4/11/13 Anirudh Ravula | UIUC | CS 525 40

Workload :
Front-End workload : 100 qps +
Unthrottled batch client
Latency SLO placed: 150 ms 99th
percentile
Scheduler Interval : 10s

Observations
•  40 secs to fall below SLO
•  150 secs to stabilize.

Convergence for dynamic
workloads like diurnal?

Evaluation : Analytics

4/11/13 Anirudh Ravula | UIUC | CS 525 41

}  20-node EC2 cluster
}  Front-end YCSB client running diurnal pattern
}  Batch MapReduce scanning over 386GB data

}  Goals:

}  Quantifying benefits of consolidating separate front-end and
backend storage clusters

}  Evaluate analytics time and provisioning cost
}  Evaluate SLO compliance

Evaluation : Analytics

4/11/13 Anirudh Ravula | UIUC | CS 525 42

Performance Gains:
1.7x speedup +
50% provisioning cost

Evaluation : Summary

4/11/13 Anirudh Ravula | UIUC | CS 525 43

} Can adapt to changing workload pattern
} Can adapt to spike workload pattern
} Can adjust SLOs to give control over

latency v/s throughput tradeoff
} Performance:

}  1.7 x speedup in batch/analytics jobs
}  50% provisioning cost

Discussion

4/11/13 Anirudh Ravula | UIUC | CS 525 44

}  Convergence times on dynamic workload? Is Cake guaranteed
to converge?

}  SLOs on throughput?
}  No experiments on write workloads. Some SLOs were

violated for read requests. They could be more severe for
writes

}  Extensibility to new storage abstractions?
}  Not possible to implement 1st level scheduling criteria at all

layers. Chunking not applied at HBase
}  Future Work : SLO admission control, Application-level SLOs,

use of SSDs, parameter tuning, multiple SLOs

1	

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski,
Scott Shenker, Ion Stoica * 	

NSDI 2011	

Presented By	

Md Tanvir Al Amin	

University of Illinois at Urbana-Champaign, IL	

Dominant Resource Fairness:	

Fair Allocation of Multiple

Resource Types	

* University of California, Berkeley, CA	

Resource Demands in a Datacenter	

2	

One month (Oct 2010) trace of CPU and Memory demands���

2000-node Hadoop cluster at Facebook	

Schedulers in Practice	

•  Slot based schedulers	

• Allocate resources at the granularity of slots	

•  Slot is a fixed fraction of a node	

• Agnostic of user demand heterogeneity	

•  Example	

• Quincy (Dryad)	

• Hadoop’s Fair Scheduler	

• Outcome?	

• Underutilization	

• Thrashing	

• Users can game the system	

	

3	

It really happens!	

• Users game the system (Not strategy-proof)	

• Yahoo! Hadoop cluster allocated more slots for Reduce	

• User launched all his jobs as long reduce phases	

• A “Big” search company provided dedicated machines for
jobs that had high utilization	

• Users inserted artificial infinite loops	

• Underutilization and Over-utilization	

• CDF of demand to slot ratio ���
in the Facebook example.	

ratio < 1 : Underutilizing	

ratio > 1 : Over-utilizing	

	

4	

It really happens!	

• Users game the system (Not strategy-proof)	

• Yahoo! Hadoop cluster allocated more slots for Reduce	

• User launched all his jobs as long reduce phases	

• A “Big” search company provided dedicated machines for
jobs that had high utilization	

• Users inserted artificial infinite loops	

• Underutilization and Over-utilization	

• CDF of demand to slot ratio ���
in the Facebook example.	

ratio < 1 : Underutilizing	

ratio > 1 : Over-utilizing	

	

5	

60% tasks need more CPU	

95% had atleast double of what really required	

Problem Definition	

• How to 	

• Fairly Share 	

• Multiple type of resources 	

• Among	

• Different Users	

• When users have 	

• Heterogeneous demands	

6	

Fairness Policy	

• Sharing incentive	

• Each user should get at-least 1/n fraction of the cluster	

• Strategy-proof	

• One cannot ‘cheat’ by lying about demand	

• Envy-free	

• User should not prefer allocation of the other	

• Pareto-efficiency	

• Cannot increase allocation of a user without the expense
of another	

• Single resource fairness	

• Reduce to max-min fairness in single resource scenario	

• Bottleneck fairness	

• Reduce to max-min on bottleneck resource if it is the only
dominant resource	

• Population monotonicity	

• A user leaves è Other users allocation do not decrease	

• Resource monotonicity	

• Resource added è No users allocation decrease	

 8	

Fairness Policy	

Single Resource Fairness	

• Max-Min Fairness strategy	

• Allocate chunks in the order of increasing demand	

• Nobody gets more than what it asks	

• All unsatisfied demands get an equal share	

9	

Single Resource Fairness	

• Max-Min Fairness strategy	

• Allocate chunks in the order of increasing demand	

• Nobody gets more than what it asks	

• All unsatisfied demands get an equal share	

1	

 4	

 6	

 10	

*Animation adapted from https://theone.ece.cmu.edu/drupal/sites/default/files/papers/Dominant%20Resource%20Fairness.pptx 	

Single Resource Fairness	

• Max-Min Fairness strategy	

• Allocate chunks in the order of increasing demand	

• Nobody gets more than what it asks	

• All unsatisfied demands get an equal share	

1	

 4	

 6	

 10	

*Animation adapted from https://theone.ece.cmu.edu/drupal/sites/default/files/papers/Dominant%20Resource%20Fairness.pptx 	

Single Resource Fairness	

• Max-Min Fairness strategy	

• Allocate chunks in the order of increasing demand	

• Nobody gets more than what it asks	

• All unsatisfied demands get an equal share	

1	

 4	

 6	

 10	

*Animation adapted from https://theone.ece.cmu.edu/drupal/sites/default/files/papers/Dominant%20Resource%20Fairness.pptx 	

Maximizes the Minimum
share of the unsatisfied ones	

Single Resource Fairness	

• Max-Min Fairness strategy	

• Allocate chunks in the order of increasing demand	

• Nobody gets more than what it asks	

• All unsatisfied demands get an equal share	

1	

 4	

 6	

 10	

*Animation adapted from https://theone.ece.cmu.edu/drupal/sites/default/files/papers/Dominant%20Resource%20Fairness.pptx 	

Maximizes the Minimum
share of the unsatisfied ones	

Round Robin, TCP, Fair Queueing, etc. all
try to approximate Max-Min Fairness	

Single Resource Fairness	

• Max-Min Fairness strategy	

• Allocate chunks in the order of increasing demand	

• Nobody gets more than what it asks	

• All unsatisfied demands get an equal share	

1	

 4	

 6	

 10	

*Animation adapted from https://theone.ece.cmu.edu/drupal/sites/default/files/papers/Dominant%20Resource%20Fairness.pptx 	

Maximizes the Minimum
share of the unsatisfied ones	

Round Robin, TCP, Fair Queueing, etc. all
try to approximate Max-Min Fairness	

Only “reasonable” mechanism with Sharing
incentive and Strategy-proof properties	

Max-Min Fairness	

• Multiple Resource	

• 2 resources: CPUs & memory	

• User 1 wants <1 CPU, 4 GB> per task	

• User 2 wants <3 CPU, 1 GB> per task	

• What is a fair allocation?	

• Users have tasks according to a demand vector	

• Not needed in practice, can simply measure actual consumption	

• Assume divisible resources	

CPU

100%

50%

0%
mem

 ? ?	

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13,	

 http://www.eecs.berkeley.edu/~kubitron/cs262	

	

15	

• Asset Fairness	

• Equalize each user’s sum of resource shares	

• Cluster with 70 CPUs, 70 GB RAM	

•  U1 needs <2 CPU, 2 GB RAM> per task	

•  U2 needs <1 CPU, 2 GB RAM> per task	

• Asset fairness yields	

•  U1: 15 tasks: 	

30 CPUs, 30 GB (∑=60)	

•  U2: 20 tasks: 	

20 CPUs, 40 GB (∑=60)	

A Natural Policy: Asset Fairness	

CPU	

User 1	

 User 2	

100%	

50%	

0%	

RAM	

43%	

57%	

43%	

28%	

16	

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13,	

 http://www.eecs.berkeley.edu/~kubitron/cs262	

	

• Asset Fairness	

• Equalize each user’s sum of resource shares	

• Cluster with 70 CPUs, 70 GB RAM	

•  U1 needs <2 CPU, 2 GB RAM> per task	

•  U2 needs <1 CPU, 2 GB RAM> per task	

• Asset fairness yields	

•  U1: 15 tasks: 	

30 CPUs, 30 GB (∑=60)	

•  U2: 20 tasks: 	

20 CPUs, 40 GB (∑=60)	

A Natural Policy: Asset Fairness	

CPU	

User 1	

 User 2	

100%	

50%	

0%	

RAM	

43%	

57%	

43%	

28%	

Problem	

User 1 has < 50% of both CPUs and RAM	

	

Better off in a separate cluster with 50% of the
resources	

	

17	

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13,	

 http://www.eecs.berkeley.edu/~kubitron/cs262	

	

Dominant Resource Fairness	

• A user’s dominant resource is the resource she has the biggest

share of	

• Example: 	

	

Total resources: 	

<10 CPU, 	

4 GB>	

	

User 1’s allocation: 	

<2 CPU, 	

1 GB> 	

	

Dominant resource is memory as 1/4 > 2/10 (1/5)	

• A user’s dominant share is the fraction of the dominant
resource she is allocated	

• User 1’s dominant share is 25% (1/4)	

18	

Dominant Resource Fairness	

Example: 	

	

Total resources: 	

<9 CPU, 18 GB>	

	

User 1 demand: 	

 <1 CPU, 4 GB> dominant res: mem	

	

User 2 demand: 	

 <3 CPU, 1 GB> dominant res: CPU	

	

19	

max(x, y)
s.t
x + 3y ≤ 9
4x + y ≤18
2x
9

= y
3

∴ x = 3, y = 2

Dominant Resource Fairness	

Example: 	

	

Total resources: 	

<9 CPU, 18 GB>	

	

User 1 demand: 	

 <1 CPU, 4 GB> dominant res: mem	

	

User 2 demand: 	

 <3 CPU, 1 GB> dominant res: CPU	

	

20	

max(x, y)
s.t
x + 3y ≤ 9
4x + y ≤18
2x
9

= y
3

∴ x = 3, y = 2

CPU Constraint	

Memory Constraint	

DRF Equalize	

User 1: <3 CPU, 12 GB>, User2: <6 CPU, 2 GB> 	

x tasks from User1, y tasks from User2	

Dominant Resource Fairness	

Example: 	

	

Total resources: 	

<9 CPU, 18 GB>	

	

User 1 demand: 	

 <1 CPU, 4 GB> dominant res: mem	

	

User 2 demand: 	

 <3 CPU, 1 GB> dominant res: CPU	

	

User 1	

User 2	

100%	

50%	

0%	

CPU	

(9 total)	

mem	

(18 total)	

3 CPUs	

 12 GB	

6 CPUs	

 2 GB	

66%	

66%	

21	

Online DRF Scheduler	

	

•  Easy computation	

•  O(log n) time per decision using binary heaps	

•  How to determine demand vectors?	

Whenever there are available resources and tasks to run:	

	

Schedule a task to the user with smallest dominant share 	

	

22	

Alternative: CEEI	

• Approach	

• Set prices for each good	

• Let users buy what they want	

• How do we determine the right prices for different goods?	

• Let the market determine the prices	

• Competitive Equilibrium from Equal Incomes (CEEI) 	

• Give each user 1/n of every resource 	

• Let users trade in a perfectly competitive market	

• Not strategy-proof!	

23	

CEEI	

24	

max(x.y)
s.t
x + 3y ≤ 9
4x + y ≤18

∴ x = 45
11
, y = 18

11

CEEI	

25	

max(x.y)
s.t
x + 3y ≤ 9
4x + y ≤18

∴ x = 45
11
, y = 18

11

CPU Constraint	

Memory Constraint	

User 1: <4.1 CPU, 16.4 GB>,
User2: <4.9 CPU, 1.6 GB> 	

Product of Nash Products	

DRF vs CEEI	

•  User 1: <1 CPU, 4 GB> User 2: <3 CPU, 1 GB>	

•  DRF more fair, CEEI better utilization	

 CPU mem!

user 2!
user 1!

100%!

50%!

0%!

 CPU mem!

100%!

50%!

0%!

Dominant	

Resource	

Fairness	

Compe22ve	

Equilibrium	
 from	

Equal	
 Incomes	

66%	

66%	

55%	

91%	

26	

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13,	

 http://www.eecs.berkeley.edu/~kubitron/cs262	

	

DRF vs CEEI	

•  User 1: <1 CPU, 4 GB> User 2: <3 CPU, 1 GB>	

•  DRF more fair, CEEI better utilization	

 CPU mem!

user 2!
user 1!

100%!

50%!

0%!

 CPU mem!

100%!

50%!

0%!

Dominant	

Resource	

Fairness	

Compe22ve	

Equilibrium	
 from	

Equal	
 Incomes	

66%	

66%	

55%	

91%	

 CPU mem!

100%!

50%!

0%!

 CPU mem!

100%!

50%!

0%!

Dominant	
 	

Resource	

Fairness	

Compe22ve	

Equilibrium	
 from	

Equal	
 Incomes	

66%	

66%	

60%	

80%	

27	

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13,	

 http://www.eecs.berkeley.edu/~kubitron/cs262	

	

User 1: <1 CPU, 4 GB> User 2: <3 CPU, 2 GB>	

User 2 increased her share of both CPU and memory	

DRF vs CEEI	

•  User 1: <1 CPU, 4 GB> User 2: <3 CPU, 1 GB>	

•  DRF more fair, CEEI better utilization	

 CPU mem!

user 2!
user 1!

100%!

50%!

0%!

 CPU mem!

100%!

50%!

0%!

Dominant	

Resource	

Fairness	

Compe22ve	

Equilibrium	
 from	

Equal	
 Incomes	

66%	

66%	

55%	

91%	

 CPU mem!

100%!

50%!

0%!

 CPU mem!

100%!

50%!

0%!

Dominant	
 	

Resource	

Fairness	

Compe22ve	

Equilibrium	
 from	

Equal	
 Incomes	

66%	

66%	

60%	

80%	

28	

Slide adapted from: John Kubiatowicz and Anthony D. Joseph, Advanced Topics in Computer Systems, Lecture 13,	

 http://www.eecs.berkeley.edu/~kubitron/cs262	

	

User 1: <1 CPU, 4 GB> User 2: <3 CPU, 2 GB>	

User 2 increased her share of both CPU and memory	

DRF vs Asset Fairness vs CEEI	

• Resources <1000 CPUs, 1000 GB>	

• 2 users A: <2 CPU, 3 GB> and B: <5 CPU, 1 GB>	

User A	

User B	

a) DRF	

 b) Asset Fairness	

CPU	

 Mem	

 CPU	

 Mem	

 CPU	

 Mem	

100%	

50%	

0%	

100%	

50%	

0%	

100%	

50%	

0%	

c) CEEI	

Comparison	

Property	

 Asset Fairness	

 CEEI	

 DRF	

Sharing Incentive	

 ✗	

 ✓	

 ✓	

Strategy-Proofness	

 ✓	

 ✗	

 ✓	

Envy-freeness	

 ✓	

 ✓	

 ✓	

Pareto efficiency	

 ✓	

 ✓	

 ✓	

Single Resource
Fairness	

✓	

 ✓	

 ✓	

Bottleneck Fairness	

 ✗	

 ✓	

 ✓	

Population
Monotonicity	

✓	

 ✗	

 ✓	

Resource
Monotonicity	

✗	

 ✗	

 ✗	

30	

Evaluation	

• Micro-experiments	

•  48 node Mesos cluster on EC2	

•  Extra large instances with 4 CPU cores and 15 GB of RAM	

•  Two jobs, one CPU intensive, one memory intensive	

• Compare DRF with current Hadoop scheduler	

• Macro-benchmark through simulations	

•  Simulate Facebook trace with DRF and current Hadoop
scheduler	

Micro Experiments	

32	

Job1’s Share	

Job 2’s share	

Dominant Share	

Hadoop Fair Scheduler Experiments	

	

• Hadoop Fair Scheduler/capacity/Quincy	

• Each machine consists of k slots (e.g. k=2~6)	

• Run at most one task per slot	

• apply max-min fairness to slot-count	

	

33	

Micro Experiments	

34	

Number of large jobs completed	

Number of small jobs completed	

Jo
bs

 fi
ni

sh
ed
	

Jo
bs

 fi
ni

sh
ed
	

Micro Experiments	

35	

Number of large jobs completed	

Number of small jobs completed	

Jo
bs

 fi
ni

sh
ed
	

Jo
bs

 fi
ni

sh
ed
	

Thrashing	

Low Utilization	

Thrashing	

Micro Experiments	

36	

Average response time for large jobs	

Average response time for small jobs	

R
es

po
ns

e
T

im
e	

R
es

po
ns

e
T

im
e	

Micro Experiments	

37	

Average response time for large jobs	

Average response time for small jobs	

R
es

po
ns

e
T

im
e	

R
es

po
ns

e
T

im
e	

Thrashing	

Thrashing	

Macro Benchmarks	

38	

Average reduction of the completion times for different job sizes for a
trace from a Facebook Hadoop cluster	

Utilization	

39	

CPU and Memory utilization for DRF and slot fairness for a trace from
Facebook Hadoop Cluster	

Discussions	

•  Fair sharing vs. Meeting Deadlines? (Indy)	

•  Is the job throughput only concern?	

•  What is the cloud specific requirement behind this research?	

•  Why don’t we require / apply this fairness in a single machine OS?	

•  Is multi-tenancy of a cloud the only reason for this scheduling?	

•  Only Memory and CPU ! IO, Network, Disk is absent from experiments?	

•  Hadoop stores the intermediate results in persistence storage 	

•  They are considering exclusive resources. What about shared resources in the Datacenter? How to
share the network?	

•  Multi-Resource Fair Queueing for Packet Processing: SIGCOMM 2012	

•  Schedule multiple resources in a Middleboxes (IDS, VPN, Firewall, Wan Optimizer etc)	

•  What about the task placement constraints?	

•  Integrate DRF with Hadoop?	

•  Leaves some resource unutilized	

•  Adding more resources to the system may decrease the allocations for existing users.	

•  Proved in the paper that satisfying everything is not possible	

 40	

	cake-anirudh
	drf-tanvir-overlay

