
RESTORE: REUSING RESULTS 
OF MAPREDUCE JOBS 
Junjie Hu 1 



Introduction 

¨  Current practice deletes intermediate results of 
MapReduce jobs  

¨  These results are not useless 
¨  A system that reuses the output of MapReduce 

jobs / sub-jobs -- ReStore 

2 



Example 

Proje
ct Load Data1 

Data1 Load 
Proje

ct 

Grou
p 

Stor
e 

Stor
e 

3 



Restore system architecture 

4 



Plan Matcher and Rewriter 

¨  Before a job J is matched, all other jobs J 
depends on have to be matched and rewritten to 
use the job stored in the repository 

¨  A physical plan in the repository is considered 
matched if it is contained within the input 
MapReduce job 

5 



Example 

¨  A = load 
‘page_review’ as (user, 
timestamp, page_info); 

¨  Store A into ‘out1’; 

¨  A = load 
‘page_review’ as (user, 
timestamp, page_info); 

¨  B = foreach A 
generate user, 
page_info 

¨  Store B into ‘out2’; 
6 



Match Algorithm 

¨  Use DFS 
¨  ReStore uses the first match(greedy) 
¨  Rules to order the physical plans:  

1) A is preferred to B if all the operators in B have 
equivalent operators in A(A subsumes B)  
2) Based on the ratio between I/O size, execution 
time 

7 



Two types of reuse 

¨  Job 
pros: 1) easy to reuse 2) already stored 
cons: 1) not always reusable  

¨  Sub-jobs (how to generate) 
pros: 1) more opportunities to be reused 
cons: discuss later 

8 



Discussion 

¨  Why not always reuses jobs? 
¨  The challenge in reusing sub-jobs? 
¨  The disadvantages in reusing sub-jobs? 

9 



How to generate sub-jobs 

¨  Inject ‘store’ after each 
operators 

¨  Use heuristics, inject 
‘store’ after ‘good’ 
candidate  

OP1 OP2 Store 

Store 

…… 

10 



Heuristics for choosing sub-jobs  

¨  Conservative Heuristic 
the operator that 
reduces the input-size. 
E.g.: project, filter. 

¨  Aggressive Heuristic 
the operator that 
reduces input size and 
outputs of operators 
are known to be 
expensive. E.g.: join, 
group, project,filter 

11 



The property of the job should  
be kept in the ReStore Repository 

¨  Property 1: can reduce the execution time of a 
workflow that contains this job/sub-job 

¨  Property 2: can be reused in future workflows 
¨  Check these properties based on statistics of 

MapReduce system 
 

12 



Experiment 

¨  Use PigMix: a set of queries used to test Pig 
performance. E.g.: L3 join, L11 distinct + union 

¨  Two instances to test: 15GB and 150GB(more details 
on paper) 

¨  Speedup: improved execution time / original execution 
time 

¨  Overhead: executing time in addition to injecting store 
operators / original execution time 

13 



Overall: effect of reusing jobs 

Speedup:  
9.8 
L3:Group and 
aggregate 
L11:union two 
data sets 

14 



The effect of reusing sub-jobs outputs for  data 
size 150GB 

Speedup:  
24.4 
Overhead: 
1.6 
 

15 



Execution time when reusing sub-jobs chosen by 
different heuristics 

L7: 
nested 
split 

Why aggressive is much worse than no-h? 

16 



Overall: Reusing whole jobs and sub-jobs 

17 



Performance on 15GB and 150GB 

¨  Data size:150GB 
Speedup: 24.4 
Overhead:1.6 

¨  Data size: 15GB 
Speedup: 3 
Over head:2.4 

Win! 

18 



Effect of Data Reduction 

¨  As the amount of data 
eliminated by the Filter 
of Projector operator 
increases, overhead 
decreases and 
speedup increases. 

19 



Conclusion 

¨  Jobs of MapReduce can be reused 
¨  Intermediate results of MapReduce jobs can be 

useful 
¨  Trade-off between increased workload by injecting 

extra store operators and decreased workload by 
reusing results 

¨  The type of command  

20 



ONLY AGGRESSIVE 
ELEPHANTS ARE FAST 
ELEPHANTS  
Xueman Mou 21 



Background 

¨  Hadoop + HDFS 
¤ Each different filter conditions trigger a new 

MapRedece Job 
¤ “going shopping without a shopping list” 
¤ “Let’s see what I am going to encounter on the way” 

22 



What is HAIL… 

¨  Hadoop Aggressive Indexing Library 
¨  HAIL: 

¤ Keeps existing replicas in different sort orders and with 
different clustered indexes 

¤ Faster to find a suitable index 
¤ Longer runtime for a workload 

23 



Why HAIL 

¨  Each MapReduce job requires to scan the whole disk 
¤   slow query time 

¨  Trojan index 
¤   expensive index creation  
¤ How to use General attributes for other tasks 

¨  HDFS keeps replicas which all have the same physical 
data layouts 

24 



HAIL 

¨  Client analyzes input data for each HDFS block 
¨  Converts each HDFS block to binary PAX 
¨  Sort data in parallel in different sorting orders 

¨  Datanode creates clustered index 
¨  MapReduce job exploits the indexes 

¨  Failover: Standard Hadoop scanning 

25 



What is PAX? 

¨  Partition Attributes Across 
¨  A data organization model 
¨  Significantly improves cache performance by 

grouping together all values of each attribute 
within each page. Because PAX only affects layout 
inside the pages, it incurs no storage penalty and 
does not affect I/O behavior.  

http://www.pdl.cmu.edu/ftp/Database/pax.pdf  26 



Use case 

¨  Bob: representative analyst 
¨  A large web log has three fields, which may serve 

as different filter conditions: 
¤   visitDate 
¤   adRevenue 
¤   sourceIP 

27 



Upload Process 
Reuse as much HDFS existing pipeline as possible 
1: parse into rows based on end of line 
2: parse each row by the schema specified 
3: HDFS gets list of datanodes for block 
4: PAX data is cut into packets 

PCK – data packet 
ACK – acknowledgement number 

8: DN1, DN2 immediately forward pckt 
9: DN3 verify checksums 
10: DN3 acknowledge pckt back to DN2  
6: assemble block in main memory 

7: Sorts data, create indexs, form HAIL block 

28 



HDFS Namenode Extension 

¨  It keeps track of different sort orders 

¨  HAIL needs to schedule map tasks close to replicas 
having suitable indexes 

¨  Central namenode keeps Dir_Block mapping: 
blockID → Set Of DataNodes.  

    and Dir_rep mapping: 
  (blockID, datanode) → HAILBlockReplicaInfo.  

29 



Indexing Pipeline 

Figure 2: HAIL data column index 

•  Why clustered indexing? 
–  Cheap to create in main memory 
–  Cheap to write to disk 
–  Cheap to query from disk 

•  Divides data of attribute sourceIP into partitions 
  Consisting of 1024 values 

•  Child pointers to start offset  
•  Only the first child pointer is explicit 

–  all leaves are contiguous on disk 
–  can be reached by simply multiplying 

  the leaf size with the leaf ID.  

30 



Query 

¨  SELECT sourceIP  
    FROM UserVisits WHERE visitDate  
    BETWEEN ‘1999-01-01’ AND ‘2000-01-01’;  

31 



Query Pipeline 

Annotates his map function to specify 
 the selection predicate and the 
 projected attributes required 
 by his MapReduce job.  
 
 

JobClient logically breaks the input  
into smaller pieces called input splits. 
An input split defines 
 the input data of a map task.  
 

For each map task, the JobTracker decides on 
 which computing node to schedule the map task, 
 using the split locations. 

The map task uses a RecordReader UDF  
in order to read its input data blocki  
from the closest datanode.  
 32 



Query Pipeline – System Perspective 

¨  It is crucial to be non-intrusive to the standard Hadoop 
execution pipeline so that users run MapReduce jobs 
exactly as before.  

¨  HailInputFormat  
¤  a more elaborate splitting policy, called HailSplitting.  

¨  HailRecordReader  
¤  responsible for retrieving the records that satisfy the 

selection predicate of MapReduce jobs. 

33 



Experiment 

¨  Six different clusters 
¤  One physical cluster with 10 nodes  
¤  Three EC2 clusters using different data types each with 10 nodes 
¤  Two EC2 clusters: one with 50 nodes, the other 100 nodes 

¨  Two datasets: 
¤  UserVisits table – 20GB data per node 
¤  Synthetic dataset – 13GB data per node 

n  consisting of 19 integer attributes in order to understand the effects 
of selectivity. 

34 



Queries 

¨  Bob-Q1 (selectivity: 3.1 x 10−2) 
SELECT sourceIP FROM UserVisits WHERE visitDate  

¨  BETWEEN ‘1999-01-01’ AND ‘2000-01-01’; Bob-Q2 (selectivity: 3.2 x 10−8 ) 
SELECT searchWord, duration, adRevenue  

¨  FROM UserVisits WHERE sourceIP=‘172.101.11.46’; Bob-Q3 (selectivity: 6 x 10−9)  
¨  SELECT searchWord, duration, adRevenue FROM UserVisits WHERE sourceIP=‘172.101.11.46’ 

AND visitDate=‘1992-12-22’; Bob-Q4 (selectivity: 1.7 x 10−2)  
¨  SELECT searchWord, duration, adRevenue FROM UserVisits WHERE adRevenue>=1 AND 

adRevenue<=10; Additionally, we use a variation of query Bob-Q4 to see how well HAIL 
performs on queries with low selectivities:  

¨  Bob-Q5 (selectivity: 2.04 x 10−1 )  
¨  SELECT searchWord, duration, adRevenue FROM UserVisits WHERE adRevenue>=1 AND 

adRevenue<=100;  

35 



Experiment Result (1) 
HAIL has a negligible upload  
overhead of ∼2% over  
standard Hadoop.  
 

When HAIL creates one index 
 per replica the overhead still 
 remains very low (at most ∼14%).  
 

 HAIL outperforms Hadoop  
by a factor of 1.6 even  
when creating three indexes.  
 

marks the time Hadoop  
takes to upload with  
the default repli- cation  
factor of three.  
 

HAIL significantly outperforms Hadoop  
for any replication factor.  
 

36 



Experiment Result (2) 

UV: Upload times for UserVisits when scaling-up 
Syn:  Upload times for Synthetic when scaling-up [sec]  

•  HAIL achieves roughly the same upload times for the Synthetic dataset. 
•  HAIL improves its upload times for larger clusters for UserVisits dataset. 
•  More interesting, we observe that HAIL does not suffer from  

 high performance variability. 

37 



Experiment Result (3) 

38 



Fault tolerence 
•  HAIL preserves the failover property of Hadoop by having almost the 

same slowdown. 

•  When HAIL creates the same index on all replicas (HAIL-1Idx), HAIL has a 
lower slowdown since failed map tasks can still perform an index scan 
even after failure.  

 

HAIL: create indexes on three different attributes, one for each replica. 
HAIL-1ldx:  create an index on the same attribute for all three replicas.  39 



Wrap Up   

¨  HAIL can: 
¤  Improve both upload and query times 
¤ Keep failover properties of Hadoop 
¤ works with existing MapReduce jobs incurring only 

minimal changes to them 

40 



Questions to Ponder 

¨  Why does HAIL have different performance on different data types? 
¨  Would it be possible to use HAIL for the data that is already stored in the 

cluster? 
¨  Is HAIL open source? 
¨  Can HAIL integrate with other systems, such as Pig or Hive? – API 
¨  Why do/don’t the authors use Hadoop++? 
¨  What is it like when using HAIL on other cases? 
¨  How useful it will be for needs of different users/queries? 
¨  …. 

41 



Backup Slides 

¨  HAIL vs. Hadoop++ 
¤ HAIL create Trojan indexes per physical replica instead of 

logical HDFS replica 
¤ HAIL create indexes less expensive 

¨  Twitter full text indexing 
¤ Only suitable for highly selective queries  

¨  CoHadoop 
¤ Did not improve indexing features of Hadoop++ 

42 



BUILDING WAVELET 
HISTOGRAMS ON LARGE 
DATA IN MAPREDUCE 
Junjie Hu 43 



Introduction 

¨  Histograms are important for summarizing data 
¨  Wavelet histogram is one of the most widely used 
¨  Straightforward adaption for building wavelet 

histograms to MapReduce is inefficient 
¨  Require new algorithm 

44 



How to build wavelet histograms 

¨  Suppose dataset has a key drawn from domain u = {1, 2, 
…, u} 

¨  Frequency vector as v = ( v(1), v(2) …, v(u)) where v(x) is 
the number of occurrences of key x in the data sets 

¨  Calculate wavelet basis vector ψ, same length as v. ψ is 
unrelated to v 

¨  Coefficients are w(i) = <v, ψ(i)> (dot products), i = 1, …, u 
¨  Computer the best k-term wavelet representations using 

centralized algorithm 

45 



Baseline solution (Send-V) 

¨  m mappers(node) and single reducer(coordinator) 
¨  Mapper: each mapper emits (x, vlocal (x)) for all x 

in the splits and its local frequency 
¨  Reducer: aggregate (x, v(x)).  

Calculate w(i) = <v, ψ(i)> then select best k-terms. 

46 



Alternative baseline (Send-Coefficient) 

¨  Due to the Distributive 
Law, we can calculate 
each local coefficient 
on mapper, and let 
reducer aggregate 
those results 

47 



Discussion? 

¨  Drawback? 
¨  Any improvement? (note that coefficient could be 

negative) 
¨  How many intermediate files ? Suppose the splits 

number is m, domain size is u. 

48 



Hadoop Wavelet top-k(H-WTopk) 

¨  For an item(key) x, r(x) denotes its aggregated 
score(coefficient) and rj(x) is its score at node j. 

¨  An lower bound τ(x) of item x score’s magnitude. 
τ(x) ≤ |r(x)| 

¨  A global threshold τ, kth largest τ(x).  
¨  If an item’s local score is always below τ/m, then it 

can be discarded. 

49 



Three rounds for H-WTopk: Round 1 

¨  Each node emits k highest and lowest score. If coordinator 
receives x’ score from a node, update its upper bound τ+

(x) and lower bound τ-(x) with addition of rlocal(x). 
Otherwise, add the kth highest score of this node sends to 
τ+(x), and the kth lowest to τ-(x).  

¨  Set τ(x) = 0 if τ+(x) and τ-(x) have different signs. 
Otherwise, τ (x) = min(|τ+(x)|, |τ-(x)|) 

¨  Pick the k-th largest τ(x), denotes as T1. It’s a threshold 
for the magnitude of the top-k items. 

50 



Three rounds for H-WTopk: Round 2 

¨  For each node j, emits item x if |rj(x)|> T1/m. 
¨  Define R as the set of items coordinator received. Refine 
τ+(x) and τ-(x) for every x from R. If a node has not 
been received from a node, use T1/m and -T1/m to 
update upper/lower bound. 

¨  Calculate a better threshold T2. For any x from R, 
compute τ(x) = max(|τ+(x)|,|τ-(x)|). Delete x from 
R if τ(x) < T2. 

51 



Three rounds for H-WTopk: Round 3 

¨  Ask each node for the scores of all items in R. 
¨  Computer the aggregated scores exactly for those 

items, from which we pick k items of largest 
magnitude. 

52 



H-WTop 

¨  Use lower/upper bound to estimates the score the 
item, and calculate a threshold to prune items 

¨  Cost on communication is better than baseline 
solution.  

¨  Need 3 rounds. 
¨  Drawback? 

53 



Drawback for H-WTopk 

¨  Three rounds of MapReduce jobs incurs a lot of 
overhead 

¨  On node j, every split needs to be fully scanned to 
compute local frequency vector vj and compute 
local wavelet coefficient wi,j, i = 1, …, u 

¨  Any solution? 

54 



Sampling 

¨  Assume n is #records in dataset, if we want to 
approximate each frequency v(x) with a standard 
deviation of εn, a sample of size Θ(1/ε2) is 
required. A sample probability p = 1/(ε2n). 

¨  If n is very large, we need a very small ε to keep 
accuracy. For ε= 10-6, even with one-byte key, still 
needs to emit 1TB data. 

¨  Cost of communication is O(1/ε2) 
55 



Two-level sampling (TwoLevel-S) 

¨  For each split j, extract a sample from input. 
Calculate (x, sj(x)) from sample. sj(x) is the counts of 
x. 

¨  Perform a second-level sample, for any item x with 
sj(x) ≥ (1 / ε√m), emit the (x, sj(x), otherwise, 
sample it with a probability proportional to sj(x), i.e. 
(ε√m × sj(x)), and emit the pair(x, NULL). 

56 



TwoLevel-S 

¨  Communication cost reduced to O(√m/ε). 
¨  It provides an unbiased estimation of coefficient w. 

(see proof in paper) 
¨  Both H-WTopk and TwoLevel-S work well in 

practice(see experiment results in paper) 

57 



Wrap-up 

¨  Provide two approaches to calculate coefficients used in 
wavelet histograms: one exact computation approach and 
one approximate computation approach. 

¨  Design algorithms for MapReduce jobs, one should consider 
the cost of communication (i.e., number of intermediate 
results). It’s one of the factors that influences the efficiency 
of algorithm. (For one who has taken cs425 last semester 
and worked on mp4 may have a good understanding for 
this) 

58 



¨  Thanks for watching. 

59 


