X-Trace: A Pervasive Network Tracing Framework

R. Fonseca, G. Porter, R.H. Katz, S. Shenker and I. Stoica NSDI 2007

> Presented by: Virajith Jalaparti April 8th, 2010.

A simple HTTP connection

• What are the network protocols/layers involved

Distributed Debugging

• Localize a fault

- Logging
- Predicate checking

Try to reproduce the fault

- Sufficient Logging will help
- Deterministic execution
- Fix it
 - Humans to be involved
- Efficiency/Usefulness
 - How convenient/complete is method?

Myriad of Protocols

- Applications: DNS, web, databases
- Layering: Transport, Network
- Administrative domains: ISPs
- NATs, Proxies, VPNs etc.
- Existing solutions for diagnosis are very specific
 - Traceroute
 - Http monitoring

X-Trace: a one-for-all solution

- Integrated tracing framework
- Associates metadata with each "task request"
- Constructs a "Task Tree"
 - Captures causal relations between different network protocols.

Design Principles

- Trace done in-band with actual request *Delays execution of each step*
- Trace data collected out-of-band
- Entity that receives the traces decoupled from that which requests them
 - Requires agreements/authentication etc.

X-Trace metadata

Inserted by a client/each layer to construct the task tree

X-Trace metadata

- Flags: for specifying which options are present
- Treeinfo: used for constructing the task tree
- Destination: to which the trace report has to be sent
- Options: (type, length, payload)

Making Implementations X-Tracable

Original Forwarding Code forwardMessage(msg) dest = nextHop(msg) lowerLayer.send(msg,dest) With added X-Trace Propagation forwardMessage(msg) dest = nextHop(msg) xtr = msg.getXTraceMetadata() /* Propagate to the next hop */ msg.setXTraceMetadata(xtr.pushNext()) /* Propagate to the lower layer */ lowerLayer.setXTraceMetadata(xtr.pushDown()) lowerLayer.send(msg,dest)

 Requires keeping track of causal relations for propagating the metadata received by an application

Task Tree reconstruction

- Metadata used to specify recipient of the data collected at a node
 - Need not be the initiator of the task
 - Can be different across different domains

Generating Reports

• Libxtrreport: thin library

X-Tracing Web Requests

• EDNSO options used

X-Tracing an overlay network

Experimental Setup

- 3 nodes used
 - I3 nodes
 - Chord nodes
- Simple number application
 - Source
 - Middlebox
 - destination

Complete Task Tree

15

Receiver fails

Middlebox Process crashes

Middlebox host fails

Discussion

- What does X-Trace provide?
 - Generally useful only to locate point of crash
 - Reports need to very detailed if they have to be used for debugging purposes!
- Can we use X-Trace for Routing?
 - Need not result in a tree!
 - Where does it end?
 - No simple concept of task
- Modifying Applications/Protocols!
 Guidelines for designing new applications

Discussion

- Partial Deployment
 - Better than none!
- Privacy concerns
 - Can be used to easily keep track of a user's tasks
- Requires unique task id
 - <Ip address, rand number> can be used but many hosts don't have a public Ip.
- Humans have to identify/report errors!