
X-Trace: A Pervasive Network

Tracing Framework
R. Fonseca, G. Porter, R.H. Katz, S. Shenker and I. Stoica

NSDI 2007

Presented by:
Virajith Jalaparti
April 8th, 2010.

1

A simple HTTP connection

• What are the network protocols/layers involved

2

Internet

DNS

Web Chache

Server

HTTP Get

TCP
IP

Reply

Distributed Debugging

• Localize a fault
▫ Logging
▫ Predicate checking

• Try to reproduce the fault
▫ Sufficient Logging will help
▫ Deterministic execution

• Fix it
▫ Humans to be involved

• Efficiency/Usefulness
▫ How convenient/complete is method?

3

Myriad of Protocols

• Applications: DNS, web, databases

• Layering: Transport, Network

• Administrative domains: ISPs

• NATs, Proxies, VPNs etc.

• Existing solutions for diagnosis are very specific

▫ Traceroute

▫ Http monitoring

4

X-Trace: a one-for-all solution

• Integrated tracing framework

• Associates metadata with each “task request”

• Constructs a “Task Tree”

▫ Captures causal relations between different
network protocols.

• Simple diagnostic tool; cannot be used for
extensive debugging.

5

Design Principles

• Trace done in-band with actual request

▫ Delays execution of each step

• Trace data collected out-of-band

• Entity that receives the traces decoupled from
that which requests them

▫ Requires agreements/authentication etc.

6

X-Trace metadata

• Inserted by a client/each layer to construct the
task tree

7

X-Trace metadata

• Flags: for specifying which options are present

• Treeinfo: used for constructing the task tree

• Destination: to which the trace report has to be
sent

• Options: (type, length, payload)

8

Making Implementations X-Tracable

• Requires keeping track of causal relations for
propagating the metadata received by an
application

9

Task Tree reconstruction

• Metadata used to specify recipient of the data
collected at a node

▫ Need not be the initiator of the task

▫ Can be different across different domains

• Each layer generates a report when the task was
processed.

▫ What should the report contain to be useful?

• Tree reconstructed from the pointers in trace
data

10

Generating Reports

• Libxtrreport: thin library

11

X-Tracing Web Requests

• EDNSO options used

12

X-Tracing an overlay network

13

Experimental Setup

• 3 nodes used

▫ I3 nodes

▫ Chord nodes

• Simple number application

▫ Source

▫ Middlebox

▫ destination

14

Complete Task Tree

15

Figure from CS525
Spring 2009

presentation by Chi-
Hung Lu

Receiver fails

16

Figure from CS525
Spring 2009

presentation by Chi-
Hung Lu

Middlebox Process crashes

17

Figure from CS525
Spring 2009

presentation by Chi-
Hung Lu

Middlebox host fails

18

Figure from CS525
Spring 2009

presentation by Chi-
Hung Lu

Discussion

• What does X-Trace provide?
▫ Generally useful only to locate point of crash
▫ Reports need to very detailed if they have to be

used for debugging purposes!

• Can we use X-Trace for Routing?
▫ Need not result in a tree!
▫ Where does it end?
▫ No simple concept of task

• Modifying Applications/Protocols!
▫ Guidelines for designing new applications

19

Discussion

• Partial Deployment

▫ Better than none!

• Privacy concerns

▫ Can be used to easily keep track of a user’s tasks

• Requires unique task id

▫ <Ip address, rand number> can be used but many
hosts don’t have a public Ip.

• Humans have to identify/report errors!

20

