
FAWN
A Fast Array of Wimpy Nodes

David G. Andersen, Jason Franklin, Michael
Kaminsky, Amar Phanishayee, Lawrence Tan,

Vijay Vasudevan

22nd ACM Symposium on Operating Systems
Principles – October 2009

Projected Electricity Usage

Source: Report to Congress on Server and Data Center Energy Efficiency – August 2007 2

Distributed Key Value Store

Dynamo Cassandra Voldemort

3

200 Watts

4

10 Watts 200 Watts

5

FAWN-KV store

Frontend

A

B
C

D

F

E

Frontend

Switch

Store

Lookup

Delete

.

.

.

.

6

Flash

• Fast random access

– Optimized for random reads

• Slow random writes

– Sequential Writes using append only log

7

1001

Hash Index

000

001

010

100

101

1001 Y

Offset

Data Log

FAWN-DS

101

Key Fragment

Key Fragment Valid 8

Index bits

FAWN – Replication R = 3

A

B
C

D

F

E

9

FAWN – Join Protocol

B D E

C

head tail

10

FAWN – Join Protocol

B D E

C

head tail

pre-copy

11

FAWN – Join Protocol

B D E C

head tail

Log flush

12

FAWN cluster

Source:
http://www.cs.cmu.edu/~fawnproj

13

Throughput

Source: http://www.sigops.org/sosp/sosp09/papers/andersen-sosp09.pdf

1100 - 1700 QPS per node
21 Node FAWN cluster - 20 GB data

No Frontend cache

14

Performance and Power

System/Storage QPS Watts Queries/Joule

Alix3cs/Sandisk(CF) 1298 3.75 346

Desktop / Mobi(SSD) 4289 83 51.7

Desktop / HD 171 87 1.96

256 Byte lookups

15

FAWN vs Traditional servers

Capital Cost
+

 3 Year Power Cost (0.10 /kWh)
Source: http://www.sigops.org/sosp/sosp09/slides/andersen-slides-sosp09.pdf

16

Total Cost =

Discussion

• Rethink Hadoop/Dryad for FAWN
– Read as Key Value Pairs in place of bulk reads

• Low Power Processor vs SSD savings
– CPU Intensive workloads

• From RAID to FAWN

– I/O bound drives, Memory wall
– Flash Arrays, Limited power

• Log Based store
– More efficient for frequent reads

17

Questions

18

SSD vs HDD

Sandisk 5000 HDD – WD2500
250GB 7400RPM

Access Time 0.1 ms 13.4 ms

Sequential read rate 28.5 MB/s

Sequential write rate 24 MB/s

Random read IOPS

1424 QPS

Random write IOPS 125 QPS

19

HAYSTACK
Peter Vajgel, Doug Beaver and Jason Sobel

Presented by: Rini Kaushik

Facebook Photo Storage Needs

� 15 Billion Photos
� Each has 4 images � 60 Billion Photos � 1.5PB (1015) Bytes

� Growth rate
� 220 million new photos/week � 25TB storage

� Bandwidth requirements
� 550,000 photos/second550,000 photos/second

� Assuming avg photo size = 1MB � 550GB/sec bandwidth

� 300 million users currently
� 1.3 billion people with quality internet

� 4x growth possible

� Two workloads
� Profile pictures – heavy access, smaller size

� Photos – intermittent access, more in the beginning, periodically afterwards

Motivation for Haystack

� Build a specialized store for photo workload

� Highly Scalable to meet growing storage needs

� High disk bandwidth

� Reduce metadata disk IOReduce metadata disk IO

� Reduce Content Distribution Network (CDN) reliance

� Build from commodity servers as opposed to expensive
Netapp filers ($2million each)

� Simple key-value lookup of photos, no need for Posix

Enter Haystack

� Generic Object store

� Several photos (needles) combined into a large 10
GB append able file (Haystack)

� Index file per Haystack for determining needle � Index file per Haystack for determining needle
offsets

Then and Now

NAS

Haystack

Storage Challenges before Haystack

� Photos stored in traditional Netapp’s NFS Filers (Network Attached
Storage (NAS))

� Metadata Too Huge to be Cached

� Posix compliance resulted in more metadata/file

� Each image a file � 60 Billion Files � 15TB metadata (256B inode)

� 10 disk IO (3 with lookup cache) per file for metadata� 10 disk IO (3 with lookup cache) per file for metadata
� Drastically reduces disk throughput

� No direct path from client � storage � limited bandwidth

� Result
� Relied heavily on CDNs to cache data to meet goals

� 99.98% hit rate profile

� 92% photos

� NAS more as a backup
� Inefficient and Expensive

Haystack object

Header

Haystack

Footer

Index File

Advantages

� Reduced disk IO � higher disk throughput
� 1 MB of in-memory secondary metadata for every 1GB on-disk

� 10TB per node � 10GB metadata � easily cacheable

� Simpler metadata � easier lookups
� Not posix compliant� Not posix compliant

� No directory structures/file names � 64 Bit ID instead of
file names

� Single photo serving and storage layer

� Direct IO path between client and storage

� � higher bandwidth

� Less metadata for XFS

Haystack Infrastructure

� Photo Store Server

� Accepts HTTP requests � Haystack store operations

� Maintains in-memory Haystack Index

� Haystack Object Store

� Filesystem� Filesystem

� Extent based XFS

� Storage

� 2 x quad-core CPUs

� 16GB – 32GB memory

� hardware raid controller with 256MB – 512MB of NVRAM cache

� 12+ 1TB SATA drives

Operations

� Upload
� Photo assigned 64 bit ID

� Scaled into 4 image sizes

� profileID, photo key � pvolID (volumeID) mapping stored in MySQL DB
� pvolID used to identify the volume container of a haystack

� Read� Read
� profileID , photo key, size and cookie

� Output – needle data

� Write/Modify
� Selects a haystack to store the photo

� Updates in-memory index

� Modify results in new version with higher offset

� Delete

Existing limitations/Discussion

� Adhoc data allocation of photos� haystacks

� If photos (in the same album) are placed at different times by the same user, it would be good if they
are placed sequentially or close by for better data locality.

� No support for delete/overwrites

� May lead to a lot of unnecessary versions and data � hence, reduced storage efficiency

� Compaction operation seems to be pretty expensive as it involves creating a new copy of
haystack. LFS has a much more sophisticated cleaning mechanism

� What happens if request come at the same time?� What happens if request come at the same time?

� If a file is updated, is it guaranteed to be placed on the same Haystack ID or a separate one?
If old Haystack is already full, how will version check work? How will the older versions get
identified and deleted?

� Assumes just one disk read per photo

� what if XFS doesn’t have the information in the cache, then it will have an extra lookup for the file

� Once, Haystack’s size becomes bigger than the largest extent size supported by XFS, extra lookups
may be necessary if a needle is split across extents

� It would be good to have an abstraction at the album level as well to reduce the lookup
overhead

Existing Limitations

� Haystack is tailored for small files that don't change
very often, instead of for a small number of large files
that are changing all the time.

� Privacy concerns about photo accesses—are cookies
sufficient?sufficient?

� The volume id is hardcoded in the photo which may be
a problem if the haystacks need to be moved to a
different volume for capacity balancing. Some
indirection would have been good

� How is consistency maintained between the CDN and
the Haystack?

Questions

� Does every node = 1 haystack or multiple haystacks?

� Why is the haystack expected to be just 10G? What is
the rationale?

� How is the haystack to node mapping done?How is the haystack to node mapping done?

� Why aren’t access permissions important. How else do
they enforce security especially if the clients are
reading the photos directly?

� What happens if an overwrite comes and haystack is
already full, the new version may land in lower offset

Posix compliance resulted in more metadata/file

� File length

� Device ID

� Storage block pointers

� File owner

� Group owner� Group owner

� Access rights on each assignment: read, write execute

� Change time

� Modification time

� Last access time

� Reference counts

NAS/Clustered NAS Limitations

� Limited in capacity, bandwidth and scalability

� Single Filer (NFS head) clients � NFS filer � storage
� No direct path from client � storage � limits bandwidth

� Clustered Filers
Multiple filer heads, still no direct IO path� Multiple filer heads, still no direct IO path

� NFS protocol has inherent limitations

� RPC

� Memory copying

� Too many name lookups

� Small block transfer size

1

A CASE FOR REDUNDANT ARRAYS OF

INEXPENSIVE DISKS (RAID)
D. Patterson, G. Gibson & R. Katz

Presented by: Rini KaushikFeb 2010

Disk/CPU Trends

2

���� 60% / Yr ���� 40% / Yr ���� 8% / Yr ����
2x in 1.5 yrs

until 2002

Now 20% / yr

CPUCapacity

2x in 1.5 yrs

Transfer Rate

2x in 2 yrs

Rotation +

Seek Time

1/2 in 10 yrs

� Access time = Seek Time + Rotational Latency + Size/BW

Positioning time Transfer time

Now 20% / yr2x in 1.5 yrs 2x in 2 yrs 1/2 in 10 yrs

Areal density 130Gbits/sq inch
Sustained internal transfer rate –
125MB/sec

Limited by:
•Mechanical Delays
•Settle time
•Capacity/Cost/Power/Performan
ce tradeoffs
•4 + 2 = 6ms (17W, 300GB)
•8.5 + 4.2 = 12.7ms (11W, 1TB)

Disk Wall
3

� 2GHz CPU – 0.25ns

Type Cache Main Memory Disk Storage

Access time (ns) 0.5-25 50-250 10,000,000

Bandwidth (MB/sec) 5000-20,000 2500-10,000 50-120

� 2GHz CPU – 0.25ns

� Well tuned and highly concurrent OLTP application blocks
for IO 10% of the time

� Amdahl’s law

� CPU 10X faster, still speedup 5X

� CPU 100X faster, still speedup 10X – huge potential wastage

� Discussion – When and how can we amortize the disk wall?

Exponential growth in the IO needs
4

� High IO per sec rate

� Low-end Exchange server’s IO per sec needs:

� Average user, .75 IOPS × 2,000 mailboxes=1,500 IO per sec

� High data rate (bytes transferred/sec)

115 IO/s

� HD Media, content distribution and editing – 15GB/sec

� Petascale – 100GB/s

� Capacity needs – Petabytes

� Cancer research, a single drop of blood generates more
than 60 Gigabytes

� Digital content, including media and entertainment, imaging

125 MB/s

2 TB

Redundant Array of Independent Disks
5

� Higher performance -- Striping
� Higher Data rate (MB/s)

� Multiple disks cooperate in transferring one large block

� Higher I/O per second
� Multiple independent disks service multiple independent requests

Better Reliability� Better Reliability
� Via redundancy

� Fault tolerance of 1-2 disks

� Availability during recovery

� At lower cost and power than Single Large Expensive
Disk (SLED)

RAID Levels
6

Reliability

Performance
Data rate
IO rate

Storage
Efficiency

(Useable storage percentage)

RAID 0

RAID 3

RAID 5

RAID 1

RAID 0
7

� High performance
�High read/write data rate
�High read/write IO rate

� High storage efficiency� High storage efficiency
X Zero fault tolerance

Small

Read

Small

Write

Large

Read

Large

Write

Storage

Efficiency

RAID 0 N N N N 1

N = # of Disks in the stripe

No redundancy

RAID 1
8

� High performance
�High read data rate
�High read IO rate
�OK write IO/data rate

1 write � 2 writes1 write � 2 writes
� Best fault tolerance
� Lowest recovery time
X Low storage efficiency

Small

Read

Small

Write

Large

 Read

Large

Write

Storage

Efficiency

RAID 0 N N N N 1

RAID 1 N N/2 N N/2 0.5

Synchronized
Slowdown = 1
Unsynchronized
Slowdown <= 2

RAID 3
9

�High Sequential
read/write data rate
�Good storage efficiency
�Fault tolerance for one disk
failurefailure
X Very poor Random
read/write IO rate
1 small read/write spans all
disks and reduces
concurrency

Small

Read

Small

Write

Large

Read

Large

Write

Storage

Efficiency

RAID 0 N N N N 1

RAID 3 1 0.5 N-1 N-1 (N-1)/N

Byte Interleaved
Single Parity disk

RAID 4/5
10

� Interleaving Granularity – Block level

� Pros
� High small read performance

� Large reads/writes that span the entire stripe

are very efficient

Cons� Cons
� Dismal Low Small write performance

� Single parity disk needs to be updated for all writes and serves
as bottleneck

� Discussion – Additive or subtractive parity?

� Discussion – What can we do to remove the single parity
bottleneck?

RAID 4/5 Small Writes
11

A P

1 12 2

Write A’ P’

A PP’A’

Subtractive Parity Computation
P’ A ⊕⊕⊕⊕ A’ ⊕⊕⊕⊕ P

Small

Read

Small

Write

Large

Read

Large

Write

Storage

Efficiency

RAID 0 N N N N 1

RAID 5 N 0.25N N, N-1 N-1 (N-1)/N

RAID 5
12

�High Sequential read/write
data rate, read random IO
rate
�Good storage efficiency
�Fault tolerance for one disk �Fault tolerance for one disk
failure
� No parity bottleneck
X Random write performance
very poor

Interleaving Granularity
Block level
Distributed Parity

Discussion – How can we improve the small write performance?

Performance Comparison
13

Small

Read

Small

Write

Large

Read

Large

Write

Storage

Efficiency

Fault

Tolerance
Usage

RAID 0 1 1 1 1 1 0 Scientific computing

RAID 1 1 0.50 1 0.50 0.5 1
OLTP

E-Commerce

Throughput relative to RAID 0 for performance/cost
N = # of disks in a Group

RAID 5 1 0.25 1 (N-1)/N (N-1)/N 1

Webserver

Multimedia

OLAP

DSS

Discussion – Which workload will be most suitable for each of these levels

and why?

Reliability
14

Single Disk MTTF

200,000 hrs = 23

yrs

N disks MTTF/N 83 days

Single parity RAID (MTTF * MTTF) / N * (G - 1) * MTTR 3000 yrs

Double parity RAID

(MTTF * MTTF * MTTF) / N * (G - 2) * (G - 1) *

MTTR * MTTR 38 million yrs

G = Group size = 16
N = Number of disks = 100
MTTR = 1 hr
Assumptions:
Independent failures
Only disks considered
MTTR – Mean time to repair
MTTF – Mean time to failure

Discussion – Is independent failure assumption valid?

Discussion on Assumptions of Paper’s
performance analysis

15

� Assumes a perfect workload

� Single Full-stripe Large reads/writes only

� No performance penalty for parity update

� Assumes a perfect layout of files on the disk� Assumes a perfect layout of files on the disk

� Sequentially accessed files allocated sequentially on
the disks in full-stripes

� Randomly accessed files perfectly load balanced
across disks

� No Hotspots

Impact of Partial vs. Full Stripe Write
16

D1 D2 D3 D4 Px

D1 P1D1

D2

P1

P2

High Impact on performance (with parity)
•File layout can drastically lower RAID’s performance

•Reality

•File System Fragmentation
•File boundaries may be unaligned with stripe boundaries

D4

D3P3

P4

Discussion on Limitations
17

� Scalability

� E.g. Single RAID controller bottleneck for throughput
(e.g. 6GB/sec LSI Engenio 7900)

� RAID with striping will need to be rebuild upon adding
more disks to the stripe

� Limited fault tolerance

� Fault tolerance at entire disk level failure

� No support for data corruption

	FAWN
	Haystack_ver2
	RAID

