
Publish Subscribe/CDN

CS525 Class Presentation

Presented By:

Pooja Agarwal and Jayanta Mukherjee

University of Illinois Urbana-Champaign

1

Publish Subscribe/CDN
 Publish Subscribe Systems

 Decoupling of publishers and subscribers

 Greater scalability

 More dynamic network topology
 Example: Usenet, OPS

 CDN
 Replication of data across sites

 Greater bandwidth of access
 Example: PPLive, Acamai, Bittorrent

2

M Castro, P Druschel, A M Kermarrec, A Nandi, A Rowstron, A Singh
SOSP 2003

Presented By: Pooja Agarwal and Jayanta Mukherjee

CS 525 Advanced Distributed Systems
March 16, 2010

3

Motivation
 Recent Applications

 IPTV, Tele-conferencing, Tele-immersion

 IP Multicast not widely available

 Why do we need different dissemination system for media
rather than reusing file distribution systems?

 High Bandwidth requirement(typically 1.5Mbps to 100Mbps)

 Low delay and jitter(<150ms)

 Periodic streaming(30 to 60 fps)

 Irregular traffic(I,P,B frames)

 Instream fault tolerance

4

Models for Media Streaming
Server-Client Model

S

C

P

S

P

C

C

• Problems?

5

Models for Media Streaming
Server-Client Model Single Multicast Tree(p2p)

S

C

P

S

P

C

C

S

C

C CC

C

C C C

C

C CC

• Number of leaf nodes = fh, interior
nodes = (fh -1)/(f-1)
• Problems?

• Problems?

6

SplitStream: Multiple Multicast
Trees

S

• 2^b = k ensures that forwarding load is balanced
• Inbound bandwidth control through Indegree

. . . .

In this picture, same color represents same node 7

How to Split Streams?

Frames
Coder

N0 20 10..

Packets for Description 0

NN 2N 1N..

Packets for Description N

.

.

Multiple Description Coding

• Each description can be independently decoded
• Is splitting so easy?

• MPEG-2, MPEG-4
8

Remember…
 Pastry

 Routing based on id prefix match

9

Building Multicast Trees
S

0462ba

NodeId starting 0x
NodeId starting 1x

• StripeIDs differ in MSB to ensure interior
node disjoint trees.
• Reverse path forwarding for tree join

. . . .

In this picture, same color represents same node

04213f

012da3

1656fc 163785

1656fc

163785

12da4d

0462ba
12da4d

04213f
012da3

. . . .

10

Locating Parents

Orphan performs two steps:
1) Push Down Process
2) Use Spare Capacity group

080*

081*08B*089* 9*

001*
085*

Orphan
on 0800

11

Spare Capacity Group

• An interior node can become a parent for a streamId which does not
share prefix with it’s nodeId.
• Fails: no capacity left, desired stripe not available, cycle
formation(can be solved)

• Anycast
• DFS
• Verify:

 stripe available
 no cycle
formation

12

1

2

3

o
5

Orphan
on 6

4

In:
{0,3,A}
Spare:2

In: {1,…,16},
Spare: 4

Is the tree feasible?
 Condition 1:

 S Ii <= S Ci

 Condition 1 is necessary but not sufficient

 Condition 2:

 Condition 1 holds and

 For all i: Ci > Ii then Ti + Ii = k

13

Is the tree feasible?(2)
 Probability of failure:

 N = number of nodes

 K = number of stripes

 Imin= minimum number of stripes that a node receives

 C = spare capacity = S Ci - S Ii

 Success rate is high

 Imin is expected to be close to k -> higher success

 What about free riding?

14

Complexity
 Expected amount of state maintained by each node =

O(logN)

 Expected number of messages to build forest =
O(NlogN) if trees are well balanced, else O(N2) in
worst case.

15

Experimental Setup
 Simulator models propagation delay.

 Three different network topology model used
 GATech [5050 routers, 10 transit domain, 10 stub domains, 10

topologies, link delay and routing by graph generator]

 Mercator[102,639 routers, measurements of internet, 2,662 AS
nodes, shortest path routing, no link delay info]

 CorpNet[298 routers, link delays = minimum of delay over
one month period]

 k = 16

 Six Configurations

 Stream size = 320Kbps

16

Node and Link Stress

• 40,000 nodes
• Node stress independent of number of
nodes

17

• Link Stress

Forest multicast performance

• Link stress: 98% link utilization by
splitstream.

18

• RAD with respect to IP multicast

Catastrophic failures

• 25% out of 10,000 nodes fail

19

Discussion
 What major problem does SplitStream introduces for

multimedia streaming?

 Synchronization between streams

 How can the synchronization problem be tackled?

 Bounding delay on receiving all the streams

 Optimization solution is NP Hard

 Can Anysee be applied?

20

Discussion
 Can Splitstream be used as CDN?

 SplitStream: High Bandwidth Content Distribution in
Cooperative Environments, IPTPS’03

21

CDN
 What is CDN?

– Content Distribution Network

 CDN replicates the content from origin to the replica servers

 Applications:

– News Feed

– Social Networking: Instant Messenger

 Issues with RSS system

– Causes serious load problems for providers.

– Workload is “Sticky”

– Every client periodically checks news source,

• Consuming significant bandwidth.

22

Solution
• Content provider impose hard-limits based on IP address

• Trade-off resources for quick update performance

Corona

 Lets look at Corona more closely

23

CorONA
• Novel, decentralized system for detecting and

disseminating Web-page updates

• Solves the load problem

– Trading off resources for quick update
performance

– Publishers serve content only when

• Polled involves bandwidth vs update latency

• Operates as a ring of cooperative proxy servers

• Servers dedicated to

– check the channel and disseminating the news

• Number of servers is determined optimally based on

– web object popularity, size, and update rate

24

Corona: A High Performance Publish-Subscribe
System for the World Wide Web

25

Venugopalan Ramasubramanian Ryan Peterson Emin G¨un Sirer

Cornell University, Ithaca, NY

Published at NSDI'06: Proceedings of the 3rd conference on Networked Systems
Design & Implementation, 2006

CorONA
• Cornell Online News Aggregator

• High-performance publish
subscribe system

• Quick and efficient dissemination
of web micronews

• It uses Beehive

• interact through instant messages

• backwards compatible with RSS

• RSS: Really Simple Syndication

• Syndication

– sale of the right to
broadcast

26

Corona Architecture

• Decentralized system: nodes act independently share load

• Spreads load uniformly through Consistent-hashing

• Each channel in Corona has a unique identifi�er

• Primary Owner of a channel is the node with closest identifi�er

• Adds additional owners for a channel in order to tolerate failures

27

PublisherSubscriber

Infrastructure

System Management
• Corona manages Cooperative Polling through a periodic protocol

• The Periodic protocol consisting of :

• Optimization phase:

– Nodes apply the optimization algorithm on �fine-grained
tradeoff data for locally polled channels and coarse-grained
tradeoff clusters obtained from overlay contacts.

• Maintenance phase:

– Changes to polling levels are communicated to peer nodes
in the routing table through maintenance messages

• Aggregation phase:

– Enables nodes to receive new aggregates of tradeoff
factors

28

Structured Overlays: Pastry

29

Cooperative Polling in Corona

Figure: Each channel is assigned a wedge of nodes to poll the content servers
and detect updates. Corona determines the optimal wedge size for each
channel through analysis of the global performance overhead Tradeoff.
[Figure:2 of Corona-Paper]

30

Cost-Aware Resource Allocation

 Fundamental cost and performance tradeoff

 e.g. Lookup latency vs. memory / bandwidth consumption

 System-wide performance goals become constrained optimization
problems

 Max. performance s.t. cost � limit

 Min. cost s.t. performance meets target

 Minimize update latency while ensuring the average load on
publishers

 Achieve a target update latency while minimize bandwidth
consumption

31

Different Tradeoffs for Optimization

Notations:

32

• Corona-Lite

• Corona-Fast

• Corona-Fair

• Corona-Fair-Sqrt

• Corona-Fair-Log

• 60 PlanetLab Nodes

• 7500 Channels

• 150K Subscriptions

Corona-Lite

• Minimize the average update detection time while
bounding the total network load placed on the content
servers.

• The overall update performance is measured by taking an
average of the update-detection time of each channel
weighted by the number of clients subscribed to the
channels

33

Legacy RSS Vs Corona-Lite

Figure: Update Detection Time per Channel:
Popular channels gain greater decrease
in update detection time than less
popular channels. [Figure-6 of Corona-
Paper]

34

Figure: Number of Pollers per Channel:
Corona trades off network load from
popular channels to decrease update
detection time of less popular channels and
achieve a lower system-wide average.
[Figure-5 of Corona-Paper]

Corona-Fast

• Provides a stable update performance

• Steady performance at a desired level through changes in
working load

• Minimizes total network-load on the content servers while
meeting a target average update detection time.

• It enables us to tune the update performance of the system
according to application needs.

35

Legacy RSS Vs Corona-{Lite/Fast}

36

Figure: Network Load on Content Servers:
Corona-Lite converges quickly to match the
network load imposed by legacy RSS clients
[Figure-3 of Corona-Paper]

Figure: Average Update Detection Time:
Corona-Lite provides 15-fold improvement in
update detection time compared to legacy RSS
clients for the same network load. [Figure-4 of
Corona-Paper]

Limitations of Corona-{Lite/Fast}

• Do not consider the actual rate of change of content in a channel.

• While some Web-objects are updated every few minutes, others
do not change for days at a time

Solution????

37

Corona-Fair

Corona-Fair

• Corona-Fair incorporates the update rate of channels into the
performance tradeoff in order to achieve a fairer distribution of
update performance between channels.

• Minimize average update detection time w.r.t. expected update
frequency, bounding load on content servers

• De�nies a modifi�ed update performance metric as the ratio of
the update detection time and the update interval of the
channel, which it minimizes to achieve a target load.

• Biases the performance unfavorably against channels with large
update interval times.

38

Corona-Lite Vs Corona-Fair

Figure: Update Detection Time per Channel: Corona-Fair provides better update
detection time for channels that change rapidly than for channels that change
rarely. [Figure-7 of Corona-Paper]

39

Issues with Corona-Fair

A channel that does not change for several days experiences long update
detection times, even if there are many subscribers for the channel.

Solution????

40

• Compensate for this bias
– Update performance metrics based on sq.root and log

Square root and Logarithmic functions grow sub-linearly
Sub-linear metric dampens the tendency of the optimization algorithm to punish slow-

changing yet popular feeds.

Corona-Fair-Sqrt & Corona-Fair-Log

WHY???
-

Corona-Fair-Sqrt & Corona-Fair-Log

41

• Corona-Fair with sqrt weight on the latency ratio to
emphasize infrequently changing channels.

• Corona-Fair with log weight on the latency ratio to
emphasize infrequently changing channels.

Corona-Fair-Sqrt Vs Corona-Fair-Log

Figure: Update Detection Time per Channel: Corona-Fair-Sqrt and Corona-Fair-Log �x
the bias against channels that change rarely and provide better update detection
[Figure 8 of Corona Paper]

42

Legacy RSS Vs Corona

43

Figure: Average Update Detection Time:
Corona provides an order of magnitude lower
update detection time compared to legacy
RSS.[Figure-9 of Corona-Paper]

Figure: Total Polling Load on Servers: The total
load generated by Corona is well below the
load generated by clients using legacy RSS
[Figure-10 of Corona-Paper]

Performance Summary

44

Fastest

More realistic

Discussions
• Does not require any change in the content sources

• Globally optimum allocation of bandwidth

• Extensive Simulation and practical results

• Shield web-servers from sudden increase in load

• Suitable for Pull-based architecture

• The average update time is 45 Sec

• Is this model suitable for Stock-Market?

45

AnySee: Peer-to-Peer Live Streaming

Xiaofei Liao, Hai Jin, Yunhao Liu, Lionel M. Ni, and Dafu Deng

46

IEEE INFOCOM 2006, Barcelona, Spain, April 2006

Mesh-based Overlay
• Each peer can accept media data from multiple parents as well as

provide services to multiple children

• Example: Coolstreaming , Promise, GNUStream



• Pros:

– High resource utilization

– Fast discovery of fresh peers due to gossiping

• Cons:

– Quality of service cannot be guaranteed due to gossiping

– large buffer space needed to reduce impact of autonomy of peers
(in a dynamic environment)

47

AnySee
• A peer-to-peer efficient, scalable live streaming system

– adopts an inter-overlay optimization scheme

• Objective:
– To improve global resource utilization and distribute traffic

evenly

– Assign resources based on their locality and delay

– Assure streaming service quality by using the nearest peers from
different overlays

– Balance the load among the group members.

 Released in 2004 in CERNET

 60000 users: TV, Movies, academic conferences

48

Intra-Overlay Optimization

49

AnySee Inter-Overlay Optimization

50

AnySee Inter-Overlay Optimization

51

AnySee Design: Challenges

• How to find paths with low delays in a global P2P network

• How to maintain the service continuity and stability

• How to determine the frequency of optimization operations

• How to reduce the control overhead caused by the
algorithm

52

The System Diagram of an AnySee Node

53

Mesh-based Overlay Manager

Single Overlay
Manager

Inter-Overlay
Optimization Manager

Key Node ManagerBuffer Manager

Decoding/ Player

Roadmap of Detector Message

54

TTL=0

TTL=1

Reverse-Tracing Algorithm

55

Inter-Overlay Optimization Manager

• Each peer maintains

– one active streaming path set

– one backup streaming path set

56

Characteristics of a Manager
• Employs a heuristic algorithm

 The system is optimized step by step

• Probing procedures originate from the normal peers, not
the source peer, so that the control overhead is balanced to
normal peers

• The number of forwarding neighbors, j, balance the
tradeoff between the optimization effectiveness and the
overhead

• The frequency of probing and optimization is dynamic.

57

Queuing Model
Queuing Model (M/M/m/K)

58

Optimizations

The above optimization problem can be divided into 2 parts

• we enumerate all (M, 1)-partitions of N spare connections

• For all H partitions of N connections, we can compute all H
results of average resources utilization

 select the best partition, based on which of the resources
utilization is maximal.

59

Simulation Parameters

60

Results

Figure: Continuity index V.S. streaming
rates when N=400, S=12 and initial
buffer size is 40 seconds [Figure 7 of
the AnySee Paper]

61

Figure: Resources utilization: overlay size
V.S. the number of streaming overlays
when M=12, r=300 Kbps [Figure 8 of the
AnySee Paper]

Performance of AnySee

Figure: Height V.S. tree size [Figure 13
of AnySee Paper]

62

Figure: Source-to-end delay V.S. tree
size [Figure 14 of AnySee Paper]

Discussions
• Better Global Resource Utilization

• Consider locality to minimize delay

• Better Load Balancing

• Scalable Approach

• Renamed as IOO Scheme

63

Thank You!
 Questions?

Beehive

• fully decentralized framework for resource allocation

• structured, self-organizing overlays (DHTs)

• An analysis-driven framework

– to provide low-latency news dissemination

– Limit the load placed on News Providers

• Commercial Interests

• Legal Bindings

– Optimally trading off bandwidth for performance

65

