
Hyun Duk Kim and Chia-Chi Lin

January 16, 2010

1

 Introduction

 Pig Latin

 DryadLINQ

 Comparison between Pig Latin and DryadLINQ

 Wave computing

 Related work

 Discussion

2

 Huge Amount of data analysis
Especially web service companies
 Need of parallel/distributed system

 Parallel DB
 Expensive at web scale, Limited SQL

3

 Map/Reduce
◦ More procedural programming model.

 Popular cloud computing environment

 Emergence of parallel computing tools
◦ Ease of programming

 User can just submit tasks in the specific form,
then tools execute them in distributed manner.

 Ex. Hadoop, Dryad, …

4

- Too low-level, Rigid

- Hard to maintain,

Hard to reuse code

- Re-implement common queries

- Poor debugging environment

- Redundant computing

- Load imbalance

- Success rate

vs. Window size

Power of programming Optimization across jobs

Pig Latin, DryadLINQ Wave Computing

5

Christopher Olston, Benjamin Reed, Utkarsh Srivastava,

Ravi Kumar, and Andrew Tomkins

6

Declarative
SQL

Low-level,
Procedural

Map/reduce

Pig
Latin

7

 Find the users who tend to visit high-
pagerank pages
SQL

SELECT user FROM visits, user WHERE avgpr > 0.6
IN (SELECT user, AVG(pagerank)
… one nested SQL query

Pig Latin

V_p = JOIN visits BY url, pages BY url;
Users = GROUP v_p BY user;
Useravg = FOREACH users GENERATE group,
AVG(v_p.pagerank) AS avgpr;
Answer = FILTER useravg BY avgpr > „0.5‟;
… sequence of commands

Java Map/Reduce

public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {
… more than 100 lines

8

 Execution engine on atop Hadoop

 Open source project

 Mainly developing/using in Yahoo

HadoopPig M/R
code

Pig Latin
code

9

 Find the users who tend to visit high-pagerank
pages

URL Category PageRank

cnn.com News 0.9

bbc.com News 0.8

flickr.com Photos 0.7

espn.com Sports 0.9

Visits URL Info

User URL Time

Amy cnn.com 8:00

Amy bbc.com 10:00

Amy flickr.com 10:05

Fred cnn.com 12:00

10

visits = LOAD „visits.txt‟ AS (user, url, time);

pages = LOAD „pages.txt‟ AS (url, pagerank);

v_p = JOIN visits BY url, pages BY url;

users = GROUP v_p BY user;

useravg = FOREACH users
GENERATE group, AVG(v_p.pagerank) AS avgpr;

answer = FILTER useravg BY avgpr > „0.5‟;

11

visits = LOAD „visits.txt‟ AS (user, url, time);

pages = LOAD „pages.txt‟ AS (url, pagerank);

V_p = JOIN visits BY url, pages BY url;

Users = GROUP v_p BY user;

Useravg = FOREACH users
GENERATE group, AVG(v_p.pagerank) AS avgpr;

Answer = FILTER useravg BY avgpr > „0.5‟;

visits: (Amy, cnn.com, 8am)
(Amy, frogs.com, 9am)
(Fred, snails.com, 11am)

pages: (cnn.com, 0.8)
(frogs.com, 0.8)
(snails.com, 0.3)

12

visits = LOAD „visits.txt‟ AS (user, url, time);

pages = LOAD „pages.txt‟ AS (url, pagerank);

v_p = JOIN visits BY url, pages BY url;

Users = GROUP v_p BY user;

Useravg = FOREACH users
GENERATE group, AVG(v_p.pagerank) AS avgpr;

Answer = FILTER useravg BY avgpr > „0.5‟;

visits: (Amy, cnn.com, 8am)
(Amy, frogs.com, 9am)
(Fred, snails.com, 11am)

pages: (cnn.com, 0.8)
(frogs.com, 0.8)
(snails.com, 0.3)

v_p: (Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8)
(Fred, snails.com, 11am, snails.com, 0.3)

13

visits = LOAD „visits.txt‟ AS (user, url, time);

pages = LOAD „pages.txt‟ AS (url, pagerank);

v_p = JOIN visits BY url, pages BY url;

users = GROUP v_p BY user;

Useravg = FOREACH users
GENERATE group, AVG(v_p.pagerank) AS avgpr;

Answer = FILTER useravg BY avgpr > „0.5‟;

v_p: (Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8)
(Fred, snails.com, 11am, snails.com, 0.3)

users: (Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8) })

(Fred, { (Fred, snails.com, 11am, snails.com, 0.3) })

14

visits = LOAD „visits.txt‟ AS (user, url, time);

pages = LOAD „pages.txt‟ AS (url, pagerank);

v_p = JOIN visits BY url, pages BY url;

users = GROUP v_p BY user;

Useravg = FOREACH users
GENERATE group, AVG(v_p.pagerank) AS avgpr;

Answer = FILTER useravg BY avgpr > „0.5‟;

v_p: (Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8)
(Fred, snails.com, 11am, snails.com, 0.3)

users: (Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8) })

(Fred, { (Fred, snails.com, 11am, snails.com, 0.3) })

Nested data model

15

visits = LOAD „visits.txt‟ AS (user, url, time);

pages = LOAD „pages.txt‟ AS (url, pagerank);

v_p = JOIN visits BY url, pages BY url;

users = GROUP v_p BY user;

useravg = FOREACH users
GENERATE group, AVG(v_p.pagerank) AS avgpr;

Answer = FILTER useravg BY avgpr > „0.5‟; users: (Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8) })

(Fred, { (Fred, snails.com, 11am, snails.com, 0.3) })

useravg: (Amy, 0.8)
(Fred, 0.3)

16

visits = LOAD „visits.txt‟ AS (user, url, time);

pages = LOAD „pages.txt‟ AS (url, pagerank);

v_p = JOIN visits BY url, pages BY url;

users = GROUP v_p BY user;

useravg = FOREACH users
GENERATE group, AVG(v_p.pagerank) AS avgpr;

Answer = FILTER useravg BY avgpr > „0.5‟; users: (Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8) })

(Fred, { (Fred, snails.com, 11am, snails.com, 0.3) })

useravg: (Amy, 0.8)
(Fred, 0.3)

Can use any UDFs

17

visits = LOAD „visits.txt‟ AS (user, url, time);

pages = LOAD „pages.txt‟ AS (url, pagerank);

v_p = JOIN visits BY url, pages BY url;

users = GROUP v_p BY user;

useravg = FOREACH users
GENERATE group, AVG(v_p.pagerank) AS avgpr;

answer = FILTER useravg BY avgpr > „0.5‟;

useravg: (Amy, 0.8)
(Fred, 0.3)

answer: (Amy, 0.8)

18

Load visits Load pages

Join by url

Group by user

Foreach category
generate avg

…

19

Load visits Load pages

Join by url

Group by user

Foreach category
generate avg

Map1

Reduce1

Reduce2

Map2

Every group or join operation forms a map-reduce boundary
Other operations pipelined into map and reduce phases

…

20

 Atom
„alice‟

 Tuple
(„alice‟ , „lakers‟)

 Bag
(„alice‟, „lakers‟)

(„alice‟, („iPod‟, „apple‟))

 Map
[„age‟ 20]

 Nested Data Model
(Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8)

(Amy, frogs.com, 9am, frogs.com, 0.8) })

21

 Specifying Input Data: LOAD

 Per-tuple Processing: FOREACH

 Discarding Unwanted Data: FILTER

 Getting Related Data Together: COGROUP

 Other Commends
◦ UNION, CROSS, ORDER, DISTINCT

 Asking for Output: STORE

Very Similar to SQL commands

22

 Pig Pen

23

 “Safe” optimizer
 Performs only high-confidence rewrites

 User interface
◦ Boxes and arrows UI
◦ Promote collaboration, sharing code fragments and

UDFs

 External functions
◦ Provide UDF packages

 Unified environment
◦ Use loops, conditionals of host language

24

 Implementation productivity
◦ 10 lines of Pig Latin = 200 lines of Java M/R

◦ 15 minutes to write in Pig Latin = 4 hours Java M/R

 Provide common operations like join, group,
filter, sort

 Open to non-Java programmers

25

 Slower speed
◦ Code converting overload

◦ Not task-specific optimization

 Not flexible for special operation
◦ Implementing UDF takes time

 Not SQL
◦ Weaker functions

◦ Need additional effort to convert
existing SQL query system
to the distributed system with Pig

26

 Should Pig Latin have all the SQL features?

 Is Pig really easier than Hadoop MapReduce
Programming for whom does not know SQL?

27

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,

Ulfar Erlingsson, Pradeep Kumar Gunda, and Jon Currey

28

 Obviously, Microsoft does not think so
 But, why?

◦ Hadoop employs the MapReduce programming
model

◦ “…… aims for simplicity at the expense of
generality and performance ……” [1]

 [1] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D.
2007. Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys '07.

29

NS

Files, TCP, FIFO
data plane

control
plane

PD PDPD

V V V

job manager

cluster

Job1: v11, v12, …
Job2: v21, v22, …
Job3: …

scheduler

New jobs

Job1

• Directed-acyclic graph (DAG)
• Flexible
• Permits efficient execution plans for many
algorithms

• However, it is oftentimes infeasible to specify
the DAG by hand

30

DryadLINQ provides automatic query plan generation
Dryad provides automatic distributed execution

31

SelectMany

DryadLINQGroupBy

Sort

LINQ expression

IN

OUT

Dryad execution

32

var docs = DryadLinq.GetTable<Doc>(“file://docs.txt”);
var words = docs.SelectMany(doc => doc.words);
var groups = words.GroupBy(word => word);
var counts = groups.Select(g => new WordCount(g.Key, g.Count()));

counts.ToDryadTable(“counts.txt”);

var docs = DryadLinq.GetTable<Doc>(“file://docs.txt”);
var words = docs.SelectMany(doc => doc.words);
var groups = words.GroupBy(word => word);
var counts = groups.Select(g => new WordCount(g.Key, g.Count()));

counts.ToDryadTable(“counts.txt”);

DryadLINQ

Client machine

(11)

Distributed
query plan

.NET
program

Query Expr

Data center

Output TablesResults

Input
Tables

Invoke Query

Output
DryadTable

Dryad
Execution

.Net Objects

JM

ToTable

foreach

Vertex
code

33

 Pipelining
◦ Executing multiple operators in a single process

 Removing redundancy
◦ Remove unnecessary partitioning steps

 Eager aggregation
◦ Moving down-stream aggregations in front of

partitioning operators

 I/O reduction
◦ TCP-pipe and in-memory FIFO channels

◦ Compresses data before performing a partitioning

34

Static Optimization
OrderBy

Deterministic Sampling

Histogram

Data Distribution

Merge

Sort

35

Static

O

DS

H

D

M

S

36

Dynamic

DS

H

D

DS

D

M

S

M

S

M

S

 TeraByte Sort (Indy): 10 billion 100-Byte
records with 10-Byte key

37

 Q18 from the Sloan Digital Sky Survey database:
three-way Join over two input tables containing
11.8 GBytes and 41.8 GBytes of data, respectively

38

 DryadLINQ is an elegant programming
environment combining the benefits of LINQ
with the power of Dryad

 Supports multiple languages including C#, VB,
and F#

 Leverages other systems that use the same
constructs such as PLINQ, LINQ-to-SQL, and
LINQ-to-Object

 Clean separation of Dryad and DryadLINQ

39

 Directed-acyclic graph provides generality
but also brings complexity

 Dynamic optimizations on concurrent jobs

 Debugging, analyzing, and monitoring

40

41

Pig Latin DryadLINQ

Base System Hadoop (HDFS) Dryad

Main Contributor Yahoo, Open Source Microsoft (Internal)

Programming Imperative Imperative & Declarative

Model Structure Sequence of Map/Reduce Directed Acyclic graph

Development
environment

Mainly linux,
Some eclipse plug-in

Windows, Visual Studio

Main Language Java C#

Compared to SQL Similar Very similar

 Both enable users to use parallel computing tool
more conveniently

 But, slower speed than original system
 Need for consideration in speed improvement

42

Bingsheng He, Mao Yang, Zhenyu Guo, Rishan Chen, Wei Lin,

Bing Su, Hongyi Wang, and Lidong Zhou

43

 Execution plans
◦ Dryad and Hadoop

 High-level languages
◦ DryadLINQ and Pig Latin

 Optimizations for performance and resource
utilization in both dimensions for a single job

 However, regarding optimization, there are
still something left ……

44

45

46

47

 Streams
◦ Append-only files and partitioned on multiple

machines

 Query series
◦ Recurrent computations on a stream, with each

performed on one or more stream segments

48

49

 Enabling prediction
◦ Input and output data

◦ Computation complexity of custom functions

◦ Execution environment

 Wave optimizations
◦ Shared scan and computation

◦ Query decomposition, planning, and scheduling

 Waves into the cloud

50

 Logical optimization (computation sharing)
reduces the total I/O by 12.3%

 Full optimization (computation + data sharing)
reduces the total I/O by 42.3%

51

 Logical optimization reduces the total machine
time by 30.5%

 Full optimization reduces the total machine time
by 42.0%

52

 Wave computing introduces a new processing
model that can potentially unlock the full
power of data-intensive distributed
computing

 Identifies computation and I/O redundancy

 Enables optimizations from other fields such
as database

53

 Feasibility of the model
◦ Could we apply the model directly to community

clouds?

 More opportunities
◦ Caching/reusing intermediate results

54

55

 Map-reduce-merge
◦ Map-reduce does not support processing multiple related

heterogeneous datasets.(Joins)
 Add Merge phase after reduce

 Hadoop Streaming
◦ Want to use existing executables or other languages
 Allows to create map/reduce using any executable or script

 Hbase
◦ Slow in random, realtime read/write access to Big Data

 Distributed column-oriented store model like Google‟s
Bigtable for hadoop.

56

 Hive
◦ A data warehouse infrastructure that provides data

summarization and ad hoc querying

 Zookeeper
◦ A high-performance coordinate service for

distributed applications

57

58

59

 Pig Latin: A Not-So-Foreign Language for
Data Processing, C. Olston et al., SIGMOD
2008 (Yahoo!)

 Cloudera Pig Tutorial
http://www.cloudera.com/videos/introduction_to_pig

 Dryad: Distributed Data-Parallel Programs
from Sequential Building Blocks, M. Isard et
al., EuroSys 2007

 DryadLINQ: A System for General-Purpose
Distributed Data-Parallel Computing Using a
High-Level Language, Y. Yu et al., OSDI 2008

60

 Wave Computing in the Cloud, B. He et al.,
HotOS 2009

 Comet: Batched Stream Processing in Data
Intensive Distributed Computing, B. He et al.,
Technical Report 2009

61

62

63

64

 Dataflow Language

 Nested Data Model

 Nested Operation

 Support UDF (User Defined Function)

 Parallelism Required

 Debugging Environment

65

 Limitation of map/reduce
◦ Difficulty in programming
 Too low-level, Rigid

 Hard to maintain, Hard to reuse code

 Common queries that are difficult to program

 Poor debugging environment

 Pig-Latin, DryadLINQ

◦ Performance issues
 Redundancy

 Load Imbalance

 Success Rate vs. Window size

 Wave computing

66

 Find the average pagerank of high-pagerank
urls for each sufficiently large category,

SQL

SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 106

Pig Latin

good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups = FILTER groups BY COUNT(good_urls)>106;
output = FOREACH big_groups

GENERATE category, AVG(good_urls.pagerank);

Java Map/Reduce

public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {
… more than 100 lines

67

