Sensor Net Routing

Presented by Fatemeh Saremi and Nadia Tkach

Slides are based on information from original papers

Paper Reviews

- A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks, E.M. Royer et al, IEEE Personal Communications 1999
- Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks, C. Intanagonwiwat et al, Mobicom 2000
- Learn on the Fly: Data-Driven Link Estimation and Routing in Sensor Network Backbones, Hongwei Zhang et al, Infocom 2006

A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks

Elizabeth M. Royer, UCSB

Chai-Keong Toh, Georgia Institute of Tech. *IEEE Personal Communications, April 1999*

Presented By: Fatemeh Saremi

Introduction

Wireless Mobile Networks

Infrastructured Network

Base stations

- Ad hoc Network (Infrastructureless)
 - □ No fixed router

Routing Protocol

Existing Ad Hoc Routing Protocols

- □ Table-Driven Routing Protocols (Proactive)
 - Maintain consistent and up-to-date routing info
 - □ The number of necessary routing tables
 - □ The broadcast methods for propagating changes

- Source-Initiated On-Demand Routing Protocols (Reactive)
 - Route discovery when needed

Classification of Routing Protocols in Ad Hoc Networks

Classification of Routing Protocols in Ad Hoc Networks

Ad Hoc On-Demand Distance Vector (AODV)

- On-demand version of the DSDV
- Distance Vector based
 - Unlike link state routing does not disseminate the state of all the links to all the hosts
 - Each host periodically broadcasts (to its neighbors) a distance vector
 - □ A digest of the info available to that host

Reverse Path Setup in AODV Y Ζ S E F B С Μ 2 G A H D Κ Ν

Reverse Path Setup in AODV (Y

Forward Path Setup in AODV

AODV

- Destination Sequence Number
 - To ensure all routes are loop-free
 - To identify the most recent route info
- □ Route Maintenance
 - Route Timer
 - □ For deletion of entries which are not used within the specified lifetime
 - Link Failure Notification
- □ Only the use of symmetric links supported, why?
- □ Hello messages
 - Really required?

Classification of Routing Protocols in Ad Hoc Networks

Route Caching in DSR

DSR

- Route maintenance
 - □ RERR
 - □ ACK, Passive ACK

□ DSR main problem?

Does DSR work in a network of anonymous nodes? what about AODV?

Classification of Routing Protocols in Ad Hoc Networks

Temporally-Ordered Routing Algorithm (TORA)

Based on Link Reversal method by Gafni and Bertsekas, 1981

Height: (t, oid, r, δ, ID)

02/25/2010

TORA - Partition Detection

TORA - Partition Detection

TORA - Partition Detection

TORA - Partition Detection

TORA - Partition Detection

TORA – Route Erasure

TORA

- Beneficial when many hosts want to communicate with a single destination
- Localization of control messages
 - Suitable for highly dynamic networks
- Oscillations!
 - Eventually converges ③
- Paths may not be shortest
- □ All nodes have synchronized clocks!

Classification of Routing Protocols in Ad Hoc Networks

Signal Stability-Based Adaptive Routing (SSR)

- Selects routes based on the signal strength and node's location stability
- Dynamic Routing Protocol (DRP) maintains via periodic beacons
 - Signal Stability Tables (SST), and
 - Routing Tables (RT)
- □ Static Routing Protocol (SRP) handles
 - Packet forwarding routines, and
 - Route search

Signal Stability-Based Adaptive Routing (SSR)

The Signal Stability Table (SST)

Host	Signal Strength	Last	Clicks	Set
Y				
Ζ				

The Routing Table (RT)

Destination	Next Hop
Y	
Ζ	

Table-Driven Routing Protocols

- Each node maintains one-to-all routing information
- Changes are propagated through the entire network

- Destination-Sequenced Distance-Vector Routing
- Clusterhead Gateway Switch Routing
- Wireless Routing Protocol

Classification of Routing Protocols in Ad Hoc Networks

- Uses Distributed Bellman-Ford (DBF) algorithm as a basis
- Modified to prevent looping in the network architecture by usage of sequence numbers
- Each node periodically shares its routing table with its neighbors

Destination	NextHop	Metric	Sequence number	Install	Flags	Stable_data
MH_1	MH_2	2	$S406_MH_1$	T001_MH4		$Ptr1_MH_1$
MH_2	MH_2	1	$S128_MH_2$	T001_MH4		$Ptr1_MH_2$
MH_3	MH_2	2	$S564_MH_3$	T001_MH4		Ptr1_MH3
MH_4	MH_4	0	S710_MH4	T001_MH4		Ptr1_MH4
MH_5	MH_6	2	S392_MH5	$T002_MH_4$		Ptr1_MH5
MH_6	MH_6	1	$S076_MH_6$	T001_MH4		Ptr1_MH6
MH_7	MH_6	2	$S128_MH_7$	T002_MH4		Ptr1_MH7
MH_8	MH_6	3	S050_MH8	T002_MH4		Ptr1_MH8

- Delays advertisement of unstable routes to reduce fluctuations of the routing tables
- Employs 2 types of maintenance messages:
 full dump and incremental packets to reduce the amount of traffic
- DSDV works even with nodes in a sleep node or is not in the range of direct communication at the moment

Destination	NextHop	Metric	Sequence number	Install	Flags	Stable_data
MH_1	MH_6	3	$S516_MH_1$	T810_MH4	M	$Ptr1_MH_1$
MH_2	MH_2	1	$S238_MH_2$	T001_MH4		$Ptr1_MH_2$
MH_3	MH_2	2	S674_MH3	T001_MH4		Ptr1_MH3
MH_4	MH_4	0	$S820_MH_4$	$T001_MH_4$		Ptr1_MH4
MH_5	MH_6	2	$S502_MH_5$	T002_MH4		Ptr1_MH5
MH_6	MH_6	1	$S186_MH_6$	T001_MH4		Ptr1_MH6
MH_7	MH_6	2	S238_MH7	T002_MH4		Ptr1_MH7
MH_8	MH_6	3	$S160_MH_8$	T002_MH4		$Ptr1_MH_8$

Classification of Routing Protocols in Ad Hoc Networks

Clusterhead Gateway Switch Routing (CGSR)

- Uses DSDV routing scheme on a clustered multihop mobile wireless network
- Cluster head selection algorithm
- Least Cluster Change (LCC) reduces the frequency of head re-elections, performs only when
 - Two cluster heads come into contact
 - Node moves out of reach of all cluster heads

Clusterhead Gateway Switch Routing (CGSR)

- Two types of nodes: cluster heads and gateway nodes
- Each node contains Cluster Member Table that includes the cluster heads of all destination nodes and Routing Table

Goals

- Low communication overhead
- □ As little time for path finding
- □ As few maintenance messages
- No centralized host
- □ Scalable
- □ Loop-free
- □ Small memory overhead

Comparison for On-Demand

Routing

Performance Parameters	AODV	DSR	TORA	ABR	SSR
Time Complexity (initialization)	O(2d)	O(2d)	O(2d)	O(d+z)	O(d+z)
Time Complexity (postfailure)	O(2d)	O(2d) or 0 (cache hit)	O(2d)	O(l+z)	O(l+z)
Communication Complexity (initialization)	O(2N)	O(2N)	O(2N)	O(N+y)	O(N+y)
Communication Complexity (postfailure)	O(2N)	O(2N)	O(2x)	O(x+y)	O(x+y)
Routing Philosophy	\mathbf{Flat}	\mathbf{Flat}	Flat	Flat	\mathbf{Flat}
Loop Free	Yes	Yes	Yes	Yes	Yes
Multicast Capability	Yes	No	No ³	No	No
Beaconing Requirements	No	No	No	Yes	Yes
Multiple Route Possibilities	No	Yes	Yes	No	No
Routes Maintained in	route	route	route	route	route
	\mathbf{table}	\mathbf{cache}	table	table	table
Utilizes Route Cache/Table Expiration Timers	Yes	No	No	No	No
Route Reconfiguration	Erase Route;	Erase Route;	Link Reversal;	Localized	Erase Route;
Methodology	Notify Source	Notify Source	Route Repair	Broadcast Query	Notify Source
Routing Metric	Freshest &	Shortest	Shortest Path	Associativity &	Associativity &
	Shortest Path	Path		Shortest Path & others ⁴	$\mathbf{Stability}$

Comparison for Table-Driven Routing

Parameters	DSDV	CGSR	WRP
Time Complexity (link addition / failure)	O(d)	O(d)	O(h)
Communication Complexity (link addition / failure)	O(x=N)	O(x=N)	O(x=N)
Routing Philosophy	Flat	Hierarchical	${\rm Flat}^1$
Loop Free	Yes	Yes	Yes, but not
			instantaneous
Multicast Capability	No	No^2	No
Number of Required Tables	Two	Two	Four
Frequency of Update Transmissions	Periodically	Periodically	Periodically
	& as needed		& as needed
Updates Transmitted to	Neighbors	Neighbors	Neighbors
		& cluster head	
Utilizes Sequence Numbers	Yes	Yes	Yes
Utilizes "Hello" Messages	Yes	No	Yes
Critical Nodes	No	Yes (cluster head)	No
Routing Metric	Shortest Path	Shortest Path	Shortest Path

Table-Driven vs. On-Demand

Parameters	On-demand	Table-driven	
Availability of routing information	Available when needed	Always available regardless of need	
Routing philosophy	Flat	Mostly flat, except for CGSR	
Periodic route updates	Not required	Required	
Coping with mobility	Use localized route discovery as in ABR and SSR	Inform other nodes to achieve a consistent routing table	
Signaling traffic generated	Grows with increasing mobility of active routes (as in ABR)	Greater than that of on- demand routing	
Quality of service support	Few can support QoS, although most support shortest path	Mainly shortest path as the QoS metric	

Discussion

- □ Energy efficiency vs. high throughput?
 - What trade-off relationship is most reasonable and why?
- □ High throughput vs. high traffic?
 - High packet replication guarantee high probability of packet delivery, but can result in network congestion. How to choose the best option?

Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks

Cited by 3877 Chalermek Intanagonwiwat, USC Ramesh Govindan, USC Deborah Estrin, UCLA *Mobicom 2000*

Presented By: Fatemeh Saremi

Every I ms for the next T seconds, send me a location estimate of any four-legged animal in subregion R !

02/25/2010

Sensor Networks

Distributed sensing

Source

02/25/2010

- □ Large scale, dynamically changing
- □ Inhospitable environments, low maintenance
- □ Scalability, Robustness, Energy efficiency

Every I ms for the next T seconds, send me a location estimate of any four-legged animal in subregion R !

60

Directed Diffusion Elements

- □ Naming
- □ Interests
- □ Gradients
- Data Propagation
- Reinforcement

Naming

- □ Task descriptions are named by a list of attribute-value pairs
- □ Task description (interest)

type = four-legged animal

interval = 20 ms

duration = 10 seconds

rect = [-100, 100, 200, 400]

□ Sensed data description

```
type = four-legged animal
instance = lion
location = [125, 250]
intensity = 0.6
confidence = 0.85
timestamp = 01:20:40
```

02/25/2010

Interests and Gradients

- □ Interest sensing task
- Sink broadcasts interest
 - The interest contains much larger interval
 - Periodically refreshed

type = four-legged animal interval = 1 s rect = [-100, 200, 200, 400] timestamp = 01:20:40 expiresAt = 01:30:40

Interests and Gradients

- □ Every node maintains an interest cache
 - Each item corresponds to a **distinct** interest
 - Each entry has a timestamp and a list of gradients
 - Each gradient contains locally unique neighbor id, data rate and duration fields
 - Entries do not contain info about the sink

□ Interest aggregation

Interests and Gradients

After receiving an interest, a node may resend or suppress it (if it has already resent the interest)

Data Propagation

- Detecting a target, the sensor node generates event samples at the highest requested rate
- Data messages will be unicast individually to the relevant neighbors

```
type = four-legged animal
Instance = lion
interval = 1 s
Location = [125, 220]
Intensity = 0.6
Confidence = 0.85
timestamp = 01:20:40
```

A node that receives a data message from its neighbors attempts to find a matching interest in its interest cache

Data Propagation

- □ If a match exists, it checks the data cache associated with the matching interest
 - Data cache keeps track of recently seen data items
 - Loop prevention and downconversion

Reinforcement

- Sink reinforces one particular neighbor to drawn down higher quality events
- □ If the neighboring node realizes that the new data rate is higher than any existing gradient in its cache, the node must reinforce at least one neighbor

Negative Reinforcement

Different mechanisms

- Timeout all high data rate gradients unless they are explicitly reinforced
- Explicitly degrade the path by resending the interest with the lower data rate

Discussion

Discussion (Cont.)

Local repair

- □ Novel features
 - Data-centric dissemination
 - Data caching
 - In-network interest/data aggregation
 - (Negative) Reinforcement based path adaptation

Discussion (Cont.)

Would it be better if interest entries in the cache contain info about the sink?

How would you compare Directed Diffusion with reactive routing protocols?
• "Routes" are established on-demand

- No attempt is made to find loop-free path before data transmission commences
- Soon thereafter reinforcement attempts to reduce the multiplicity of paths to a small number

Message cache is used to perform loop avoidance

Could the features be applied to traditional networks? Why or why not?

- Data-centric
- Neighbor-to-neighbor
- No "routers"
 - Sensor networks are not general-purpose communication networks
- No need for globally unique IDs
- Possibility of performing coordinated sensing close to the sensed phenomena (vs. what IP-based sensor networks do)

- Nodes may propagate data in the absence of interests
 - Provides the ability to spontaneously propagate an important event to some region

- □ Robust, Scalable, and Energy Efficient
 - Local interactions and rules, (negative) reinforcement based path adaptation

Learn on the Fly: Data-driven Link Estimation Routing in Sensor Network Backbones

Hongwei Zhang, Ohio State U Anisha Arora, Ohio State U Prasun Sinha, Ohio State U *Infocom 2006*

Presented By: Nadia Tkach

Wireless Sensor Networks -Overview

- Wireless sensor nodes are disconnected and require regular beacon messaging
- Existing protocols can estimate the quality of a link at any given point, but they don't offer continuity in time
- Events on the network usually represent a sudden burst of data traffic
- Link quality can significantly drop in the presence of such events
- □ Conclusion:
 - Beaconing is not efficient
 - Beaconing require high energy consumption

- Does not use periodic beacons
- Employs information diffusion and datadriven link quality estimation
- Uses routing metric ELD the expected media-access-control (MAC) latency per unitdistance to the destination

- Based on timing feedback of MAC frame transmission, or MAC latency, and geographic location
- Initializes the node on boot up via few beacons (identifying base station location)
- Performs MAC latency sampling, adaptive estimations and probabilistic selection of a forwarder

- LOF specifies a certain threshold for ELD metric for route selection
- □ The nodes/links that fall below this value are considered dead
- □ If the node loses all reliable links/forwarders, it initiates withdrawing and rejoining process
- LOF supports probabilistic neighbor switching to try different forwarders over time

- □ Analysis and evaluation shows
 - LOF reduced end-to-end MAC latency
 - Reduces energy consumption in packet delivery
 - Improves route stability
 - Outperforms existing protocols in the events of bursty traffic as well as periodic traffic
- Based on adaptive routing concept and probabilistic exploration

Discussion

- □ Local network vs. large network?
 - Can LOF scale to large networks?
- □ Loops in LOF protocol?
 - Can there exist loops in LOF network?