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Motivations
! Basic Problem

! How to gather interesting data from thousands of motes in sensor network?
! Data could be raw sensor readings or summaries/aggregations of many 

readings

! Prior Approach 
! Aggregation as application-specific mechanism 

! TAG Approach
! Aggregation as a core service rather than a set of extensible C APIs
! TAG process aggregates in the network to save power 

! Sensor nodes are power constrained 
! Msg communication consumes a lot of power 

! Transmission of 1 bit = Execution of 800 instructions!!!
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TAG 
! Aggregates values in low power, distributed network
! Implemented on TinyOS Motes
! Simple, declarative interface for data collection and 

aggregation – SQL style
! Tree based methodology
– Root node generates requests and dissipates down the 

children
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Language: SQL style query syntax

! SQL-like syntax
! SELECT: specifies an arbitrary arithmetic expression over one or more 

aggregation values
! expr: The name of a single attribute
! agg: Aggregation function
! attrs: selects the attributes by which the sensor readings are 

partitioned
! WHERE, HAVING: Filters out irrelevant readings
! GROUP BY: specifies an attribute based partitioning of sensor readings
! EPOCH DURATION: Time interval of aggr record computation
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Aggregate Functions
! 3 components:

! Merging function f
! Initializer i
! Evaluator e

! Example: AVERAGE
! Partial State record: 

<S,C>
! Merging function

! f(<S1,C1>,<S2,C2>) 
= <S1+S2, C1+C2> 

! Initializer
! i(x)=<x,1>  

where x = sensor value
! Evaluator

! e(<S,C>)=S/C
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1
<S1, C1>

i(x) = <x1, 1>

<S2, C2>

f(<S1, C1>, <S2, C2>)
= <S1 + S2, C1 + C2>

<S4, C4>

f(<S2, C2>, <S3, C3>, <S4, C4>)

<S3, C3>

i(x) = <x3, 1>

e(<S, C>) = S/C

* Example: Internet



TAG Taxonomy (1/2)
! Aggregates are classified according to 4 properties 

(1) Duplicate sensitivity 
! Insensitive aggr: unaffected by duplicate readings from same node 

(Max, Min)
! Sensitive aggr:  Affected by duplicate readings from same node 

(Count, Average)

(2) Exemplary vs Summary
! Exemplary returns one or more representative values of a set (Max, 

Min)
! Summary returns some property over all values (Count, Average)

(3) Monotonic aggregates
! When 2 partial records s1 and s2 are combined via f, resulting state 

record s’ will have 
either e(s’) >= MAX ( e(s1), e(s2) ) or  e(s’) <= MIN ( e(s1), e(s2) )

! Important when determining whether some predicates (e.g. HAVING) 
can be applied in network
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TAG Taxonomy (2/2)
! Aggregates are classified according to 4 properties 

(4) Amount of state required for every partial state record
      Example: Partial AVERAGE record consists of pair of values,    

          while partial COUNT record consists of a single value

! Distributive: size of partial state records = size of final state record 
(MAX)

! Algebraic: Partial states are of fixed size but differ from final state 
(AVERAGE)

! Holistic: Partial states contain all sub-records (MEDIAN)
! Unique: Similar to Holistic, but amount of state that must be 

propagated is proportional to # of distinct values in the partition 
(COUNT DISTINCT)

! Content Sensitive: Size of partial records depend on content 
(HISTOGRAM)
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TAG Operation
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o Users pose aggregation queries 
from a base station

SELECT COUNT (*) FROM sensors 

o Messages propagate from the base 
station to all nodes through routing 
tree rooted at base station

o Divide time into epoch and in each 
epoch, children sends data back to 
parent using routing tree

o As data flows up the tree, it is 
aggregated according to aggregation 
function (here count)

* Image source: Internet
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Illustration: Aggregation
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SELECT COUNT(*) FROM sensors

* Example: Author’s slide
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Illustration: Aggregation
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Illustration: Aggregation
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Illustration: Aggregation
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Illustration: Aggregation
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Illustration: Aggregation
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Simulation Based Evaluation (1/2)
! Implemented in Java
! 3 communication models 

! Simple: nodes have perfect lossless communication with 
regularly placed neighbors

! Random: Nodes’ placement is random
! Realistic model to capture actual behavior of radio and link 

layer on TinyOS motes
! uses results from real world experiments to approximate actual loss of 

TinyOS radio

15



Simulation Based Evaluation (2/2)

! Min & Count: 1 integer per partial state record
! Average: 2 integers, so double cost of distributive
! Median: same as centralized as parents have to forward all 

children’s values to root
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TAG Performance in Real World
! 16 nodes, depth 4 tree, COUNT aggregate, 150 4-sec epoch (10 min run)
! No optimization
! Lossy environment 
! # of messages (Centralized: 4685, TAG: 2330, 50% comm. Reduction)
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TAG Optimizations
! Channel sharing

! If node misses initial request to aggregate, it can snoop network traffic 
and “catch up” and include itself 

! In case of MAX, do not broadcast if peer has transmitted a higher value

! Hypothesis Testing
! Root can provide information that will suppress readings that cannot 

affect the final aggregate value.
! Example: MIN must be < 50; nodes with value ! 50 need not participate

! Child Cache
! Parents remember the partial state records their children reported for 

some number of rounds
! Use those previous values when new values are unavailable (child 

messages are lost)
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Limitations
! TAG is not robust against node or link failure
! Cached results during node failure or disconnections may affect 

accuracy of the result
! TAG might not perform well if rate of queries is high, as it follows the 

flood-respond approach
! Message transmission consumes higher power; however power 

consumption also depends on node density and node layout which 
was ignored in evaluation

! Single message per node per epoch
! Message size might increase at higher level nodes
! Root gets overload

! Trade-off between aggregation and security/privacy 
! In case of privacy, data needs to be encrypted. Aggregation 

makes each node to do encryption and decryption for each 
message, which will consume energy
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Discussions
! Besides tree topology, what other topology can be considered? 
! Correctness issue: How does the user know which nodes are 

and are not included in an aggregate?
! How to incorporate nested queries?

! Example: MAX(AVG(1000 readings) @ each node)
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Outline

# Problem Definition and Motivation
# 10,000 Foot View of Synopsis Diffusion

# General Algorithm
# Concrete Descriptions of Examples

" Rings
# Formal Framework of ODI Correctness
# Aggregation Algorithms
# Topology Changing – Adaptive Ring
# Evaluation
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How do massive wireless sensor networks answer 
data queries? 

q

r2

r1 r3

r4

r5

r2
r4

r1

r5

r3

r4
r5

Direct routing of answers to query node

Sends multiple 
messages costs a 
lot ! $$$$
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An alternative solution is to perform in-network 
aggregation of results during routing.

q

r2

r1 r3

r4

r5

{r2,r4,r5}

r1 r3

r4
r5

In-Network aggregation of data using spanning tree 
topology and unreliable communications

Vulnerable to node failures, 
causing the loss of all 
aggregated data!
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Two main solutions have been attempted: better 
topologies and the use of reliable communications

[Image: Nath et al. Synopsis Diffusion 08]

Gupta et al. as well

Multipath Routing Fails Too ! Duplicate Aggregate Answers
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Synopsis Diffusion combines multi-path routing 
with order and duplicate-insensitive synopses.

r1

r3

r2

r4 q
{r1}

{r1} {r1,r3}

{r1,r2}
{r1,r2,r3,r4}Multi-path

Order- and duplicate-insensitive (ODI) synopses

Synopsis

Only 1 message sent per node as broadcast
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There are three generic functions on synopses:

s

Synopsis Generation
SG(sensor reading)

Sensor

s

Synopsis Fusion
SF(s1,s2)

Sensor

sx sy

Final Answer

Synopsis Evaluation
SE(s1,s2)

Sensor

s

All sensor nodes perform 
SG() for their local reading

The synopses sx and sy 
can be any combination 
provided by an output of 
SG(.) or SF(.,.)

The functions SG(.), SF(.,.), and SE(.) depend upon the specific aggregation scheme.
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Synopsis Diffusion on a rings overlay network 
provides a more concrete description. 

[Image: Nath et al. Synopsis Diffusion 08]

t0
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Epoch

Listen

SG(.) & SF(.,.)

Transmit



9

The count algorithm approximates the total 
number of live sensor nodes in a sensor network.

Derived from the Flajolet and Martin's algorithm (FM) for counting distinct 
elements in a multiset. 

Synopsis:

SG(): output a bit vector s of length k, with CT(k)th bit set. 

SF(s,s'): Output a bitwise OR of s and s'

SE(s): Return 2^(i-1)/0.77351, where i = lowest order bit not set

b1
b2
b3
.
.

bk
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ODI-Correctness exists when all potential 
synopsis combinations produce the same result.

Definitions: sensor reading, synopsis computation, aggregation DAG, Edge e, 
synopsis label function, projection operator

Proof is unbounded!

[Image: Nath et al. Synopsis Diffusion 08]
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In order to prove ODI-correctness one must only 
prove the following four properties hold. 

1.SG() preserves duplicates
2.SF() is communicative
3.SF() is associative
4.SF() is same synopsis indempotent

Much easier than proving the unbounded DAG problem!
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An ODI-Correct synopsis diffusion algorithm 
results in a  semi-lattice structure.

if z!SF $ x , y%
then SF $ x , z %!z ,
SF $ y , z %!z

Implies that the use of ODI synopsis provides an 
implicit acknowledgement of message success. 

u z q
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There are two types of errors that can occur when 
using a synopsis diffusion algorithm. 

Communication Error

Approximation Error

r1

r3

r2

r4 q
{s1}

{s1} {s1,s3}

{s1,s2}
{r1,r2,r3,r4}

r1

r3

r2

r4 q
{s1}

{s1} {s1,s3}

{s1,s2}
{r1,r2,r3,r4}

Failure

Approximation error: round off, etc

Solved by using a good 
routing topology

Easily analyzed by 
“centralized model”
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The authors provide several ODI-Correct synopsis 
diffusion algorithms for different types of aggregation. 

[Image: Nath et al. Synopsis Diffusion 08]
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Implicit acknowledgements allow for the 
automated adaptation of the routing topology.

[Image: Nath et al. Synopsis Diffusion 08]
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Evaluation methodology is to simulate and 
evaluate performance. 

# Topology
# Querying node at center of grid

# Aggregation Schemes
# 3 separate for the first experiment, and only one for 

subsequent experiments
# Message size: 48-byte
# Transmission Model:

# TAG simulator based on empirical data
# Accuracy: Root Mean Square (RMS)
# Power Consumption: Only include communications

Does this affect the performance of 
the other algorithms such as gossip 
base? 

Limits the breadth of their evaluation

Is a theoretical description 
enough to not include 
computation issues? 
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Authors use an algorithm for sum from a primary 
competing paper by Considine et al. 

# How does this effect the results? 
# Is it bad that they use this algorithm? 
# Is it bad that they only mention this in one line of the 

related works section, and not in the evaluation? 
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Evaluation: comparison of aggregation schemes. 

[Image: Nath et al. Synopsis Diffusion 08]
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Evaluation: comparison of aggregation schemes. 

[Image: Nath et al. Synopsis Diffusion 08]

If they are using ODI and are 
duplicate insensitive: Is it okay to be 
using approximation algorithms? 

Notice that they are still 200% off in 
some cases. 

Is 200% realistic? 
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Evaluation: effect of communication/packet loss. 

[Image: Nath et al. Synopsis Diffusion 08]
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Evaluation: effect of deployment density.

[Image: Nath et al. Synopsis Diffusion 08]



22

This paper has the following major contributions:

# A general framework to perform synopsis diffusion 
algorithm development and evaluation.

# Rings overlay topology, and subsequently adaptive 
rings topology

# Showed that they can develop algorithms for several 
aggregation schemes, which is better than related 
works. 

# Successful separation of routing and aggregation 
mechanisms. 
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Discussion Questions

# Synopsis Diffusion requires a specific implementation 
for each routing scheme and aggregation mechanism
# What are the limitations of this approach with respect to 

scalability and flexibility? 
# How much of this work is practical? Intuitively it seems 

as though there should be higher costs in computation. 
# Is a 20% loss rate okay for a real application? 
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There are two phases in a synopsis diffusion 
algorithm: distribution and aggregation phases

q

Distribution

r1

r3

r2

r4 q
{s1}

{s1} {s1,s3}

{s1,s2}
{r1,r2,r3,r4}

SF(s1, SG(s2)) = s{12}

SF(s1,SG(s3)) = s{13}

SF(s1,SG(s3)) = s{13}
SF(s123,SG(s4)) = s{1234}

Aggregation
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Trickle is a solution to the problem of how to perform 
efficient code updates in a wireless sensor network.

! Primary motivations:
! Large scale, must minimize transmission costs
! Application specific transfer protocol
! High transient loss patterns
! Instability of motes
! Cost of propagating code as well as the maintenance 

for performing propagation is costly
! Maintenance costs exceed code propagation cost
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The properties of an efficient sensor network are 
as follows: 

! Low maintenance costs
! Rapid propagation
! Scalability
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Trickle uses a “polite gossip” protocol to exchange 
code metadata for low cost maintenance. 

! Periodically transmits code metadata if it has heard no 
such meta data within a given time period

! All messages are sent via broadcast
! Guaranteed code propagation if every mote:

! Receives or transmits data periodically
! Some motes communicate at a threshold minimum 

“communication rate”
! In a lossless single hop network of size n, the 

communication rate is 1/n
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The Trickle code propagation routing algorithm: 

--- Polite Listening and Response ---

If motex receives metadata == motex_metadata:
  c++
If motex has update for code_x-y:

Broadcast code_x
If motex needs code_x+y:

Broadcast code_x metadata to receive update from y

---
Init: c = 0; k = 1 or 2; t = [0, T]
 
If c < k at time t:
  Broadcast motex_metadata

If t==T:
  c = 0
  T = rand(0,T) 0 t T

Polite Listen
Transmit metadata
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Overcoming basic assumptions:

No Packet Loss

Perfect Time Synchronization

Single-hop Network

Grows with density of network at O(log(n))

! Short listen problem

! Listen only period

O(sqrt(n))
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Automated variation of T parameter to allow for 
rapid propagation with minimal maintenance cost

Rapid 
Propagation

Maintenance
Cost

Fast Propagation

Slow Propagation

Extra Messages

Minimal Messages
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Discussion

! No code propagation: Will this skew the results at all? 
Will they just scale up? 

! To send code requires a broadcast message: How do 
we deal with 100 motes responding with updates? 

! Trickle scales to approximately 1000 motes, is this 
enough? 

! Is the simplicity and success of Trickle worth the 
broadcast costs? 
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