
TAG: a Tiny AGgregation Service
for Ad-Hoc Sensor Networks

Presented by Shameem Ahmed

Samuel Madden, Michael Franklin, Joseph Hellerstein,
and Wei Hong (OSDI 2002)

UC Berkeley and Intel Research

Motivations
! Basic Problem

! How to gather interesting data from thousands of motes in sensor network?
! Data could be raw sensor readings or summaries/aggregations of many

readings

! Prior Approach
! Aggregation as application-specific mechanism

! TAG Approach
! Aggregation as a core service rather than a set of extensible C APIs
! TAG process aggregates in the network to save power

! Sensor nodes are power constrained
! Msg communication consumes a lot of power

! Transmission of 1 bit = Execution of 800 instructions!!!

2

TAG
! Aggregates values in low power, distributed network
! Implemented on TinyOS Motes
! Simple, declarative interface for data collection and

aggregation – SQL style
! Tree based methodology
– Root node generates requests and dissipates down the

children

3

Language: SQL style query syntax

! SQL-like syntax
! SELECT: specifies an arbitrary arithmetic expression over one or more

aggregation values
! expr: The name of a single attribute
! agg: Aggregation function
! attrs: selects the attributes by which the sensor readings are

partitioned
! WHERE, HAVING: Filters out irrelevant readings
! GROUP BY: specifies an attribute based partitioning of sensor readings
! EPOCH DURATION: Time interval of aggr record computation

4

Aggregate Functions
! 3 components:

! Merging function f
! Initializer i
! Evaluator e

! Example: AVERAGE
! Partial State record:

<S,C>
! Merging function

! f(<S1,C1>,<S2,C2>)
= <S1+S2, C1+C2>

! Initializer
! i(x)=<x,1>

where x = sensor value
! Evaluator

! e(<S,C>)=S/C

5

4

3 2

1
<S1, C1>

i(x) = <x1, 1>

<S2, C2>

f(<S1, C1>, <S2, C2>)
= <S1 + S2, C1 + C2>

<S4, C4>

f(<S2, C2>, <S3, C3>, <S4, C4>)

<S3, C3>

i(x) = <x3, 1>

e(<S, C>) = S/C

* Example: Internet

TAG Taxonomy (1/2)
! Aggregates are classified according to 4 properties

(1) Duplicate sensitivity
! Insensitive aggr: unaffected by duplicate readings from same node

(Max, Min)
! Sensitive aggr: Affected by duplicate readings from same node

(Count, Average)

(2) Exemplary vs Summary
! Exemplary returns one or more representative values of a set (Max,

Min)
! Summary returns some property over all values (Count, Average)

(3) Monotonic aggregates
! When 2 partial records s1 and s2 are combined via f, resulting state

record s’ will have
either e(s’) >= MAX (e(s1), e(s2)) or e(s’) <= MIN (e(s1), e(s2))

! Important when determining whether some predicates (e.g. HAVING)
can be applied in network

6

TAG Taxonomy (2/2)
! Aggregates are classified according to 4 properties

(4) Amount of state required for every partial state record
 Example: Partial AVERAGE record consists of pair of values,

 while partial COUNT record consists of a single value

! Distributive: size of partial state records = size of final state record
(MAX)

! Algebraic: Partial states are of fixed size but differ from final state
(AVERAGE)

! Holistic: Partial states contain all sub-records (MEDIAN)
! Unique: Similar to Holistic, but amount of state that must be

propagated is proportional to # of distinct values in the partition
(COUNT DISTINCT)

! Content Sensitive: Size of partial records depend on content
(HISTOGRAM)

7

TAG Operation

1 1

3
1

1

3
7

1

2 1

10Count =

8

o Users pose aggregation queries
from a base station

SELECT COUNT (*) FROM sensors

o Messages propagate from the base
station to all nodes through routing
tree rooted at base station

o Divide time into epoch and in each
epoch, children sends data back to
parent using routing tree

o As data flows up the tree, it is
aggregated according to aggregation
function (here count)

* Image source: Internet

9

Illustration: Aggregation

1 2 3 4 5

1 1

2

3

4

1

1

2 3

4

5

1

Sensor #

Sl
ot

 #

Slot 1
SELECT COUNT(*) FROM sensors

* Example: Author’s slide

10

Illustration: Aggregation

1 2 3 4 5

1 1

2 2

3

4

1

1

2 3

4

5

2

Sensor #

Sl
ot

 #

Slot 2
SELECT COUNT(*) FROM sensors

11

Illustration: Aggregation

1 2 3 4 5

1 1

2 2

3 1 3

4

1

1

2 3

4

5

31

Sensor #

Sl
ot

 #

Slot 3

SELECT COUNT(*) FROM sensors

12

Illustration: Aggregation

1 2 3 4 5

1 1

2 2

3 1 3

4 5

1

1

2 3

4

5

5
Sensor #

Sl
ot

 #

Slot 4

SELECT COUNT(*) FROM sensors

13

Illustration: Aggregation

1 2 3 4 5

1 1

2 2

3 1 3

4 5

1 1

1

2 3

4

5

1

Sensor #

Sl
ot

 #

Slot 1SELECT COUNT(*) FROM sensors

14

Illustration: Aggregation

1 2 3 4 5

1 1

2 2

3 1 3

4 5

1 1

1

2 3

4

5

1

Sensor #

Sl
ot

 #

Slot 1
SELECT COUNT(*) FROM sensors

Simulation Based Evaluation (1/2)
! Implemented in Java
! 3 communication models

! Simple: nodes have perfect lossless communication with
regularly placed neighbors

! Random: Nodes’ placement is random
! Realistic model to capture actual behavior of radio and link

layer on TinyOS motes
! uses results from real world experiments to approximate actual loss of

TinyOS radio

15

Simulation Based Evaluation (2/2)

! Min & Count: 1 integer per partial state record
! Average: 2 integers, so double cost of distributive
! Median: same as centralized as parents have to forward all

children’s values to root

16

TAG Performance in Real World
! 16 nodes, depth 4 tree, COUNT aggregate, 150 4-sec epoch (10 min run)
! No optimization
! Lossy environment
! # of messages (Centralized: 4685, TAG: 2330, 50% comm. Reduction)

17

TAG Optimizations
! Channel sharing

! If node misses initial request to aggregate, it can snoop network traffic
and “catch up” and include itself

! In case of MAX, do not broadcast if peer has transmitted a higher value

! Hypothesis Testing
! Root can provide information that will suppress readings that cannot

affect the final aggregate value.
! Example: MIN must be < 50; nodes with value ! 50 need not participate

! Child Cache
! Parents remember the partial state records their children reported for

some number of rounds
! Use those previous values when new values are unavailable (child

messages are lost)

18

Limitations
! TAG is not robust against node or link failure
! Cached results during node failure or disconnections may affect

accuracy of the result
! TAG might not perform well if rate of queries is high, as it follows the

flood-respond approach
! Message transmission consumes higher power; however power

consumption also depends on node density and node layout which
was ignored in evaluation

! Single message per node per epoch
! Message size might increase at higher level nodes
! Root gets overload

! Trade-off between aggregation and security/privacy
! In case of privacy, data needs to be encrypted. Aggregation

makes each node to do encryption and decryption for each
message, which will consume energy

19

Discussions
! Besides tree topology, what other topology can be considered?
! Correctness issue: How does the user know which nodes are

and are not included in an aggregate?
! How to incorporate nested queries?

! Example: MAX(AVG(1000 readings) @ each node)

20

Synopsis Diffusion for Robust
Aggregation in Sensor Networks

Authors: Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary Anderson

Presented by: Nathan Dautenhahn and Shameem Ahmed

CS 525 Distributed Systems

March 9, 2010

2

Outline

Problem Definition and Motivation
10,000 Foot View of Synopsis Diffusion

General Algorithm
Concrete Descriptions of Examples

" Rings
Formal Framework of ODI Correctness
Aggregation Algorithms
Topology Changing – Adaptive Ring
Evaluation

3

How do massive wireless sensor networks answer
data queries?

q

r2

r1 r3

r4

r5

r2
r4

r1

r5

r3

r4
r5

Direct routing of answers to query node

Sends multiple
messages costs a
lot ! $$$$

4

An alternative solution is to perform in-network
aggregation of results during routing.

q

r2

r1 r3

r4

r5

{r2,r4,r5}

r1 r3

r4
r5

In-Network aggregation of data using spanning tree
topology and unreliable communications

Vulnerable to node failures,
causing the loss of all
aggregated data!

5

Two main solutions have been attempted: better
topologies and the use of reliable communications

[Image: Nath et al. Synopsis Diffusion 08]

Gupta et al. as well

Multipath Routing Fails Too ! Duplicate Aggregate Answers

6

Synopsis Diffusion combines multi-path routing
with order and duplicate-insensitive synopses.

r1

r3

r2

r4 q
{r1}

{r1} {r1,r3}

{r1,r2}
{r1,r2,r3,r4}Multi-path

Order- and duplicate-insensitive (ODI) synopses

Synopsis

Only 1 message sent per node as broadcast

7

There are three generic functions on synopses:

s

Synopsis Generation
SG(sensor reading)

Sensor

s

Synopsis Fusion
SF(s1,s2)

Sensor

sx sy

Final Answer

Synopsis Evaluation
SE(s1,s2)

Sensor

s

All sensor nodes perform
SG() for their local reading

The synopses sx and sy
can be any combination
provided by an output of
SG(.) or SF(.,.)

The functions SG(.), SF(.,.), and SE(.) depend upon the specific aggregation scheme.

8

Synopsis Diffusion on a rings overlay network
provides a more concrete description.

[Image: Nath et al. Synopsis Diffusion 08]

t0

t1

t2

t3

Epoch

Listen

SG(.) & SF(.,.)

Transmit

9

The count algorithm approximates the total
number of live sensor nodes in a sensor network.

Derived from the Flajolet and Martin's algorithm (FM) for counting distinct
elements in a multiset.

Synopsis:

SG(): output a bit vector s of length k, with CT(k)th bit set.

SF(s,s'): Output a bitwise OR of s and s'

SE(s): Return 2^(i-1)/0.77351, where i = lowest order bit not set

b1
b2
b3
.
.

bk

10

ODI-Correctness exists when all potential
synopsis combinations produce the same result.

Definitions: sensor reading, synopsis computation, aggregation DAG, Edge e,
synopsis label function, projection operator

Proof is unbounded!

[Image: Nath et al. Synopsis Diffusion 08]

11

In order to prove ODI-correctness one must only
prove the following four properties hold.

1.SG() preserves duplicates
2.SF() is communicative
3.SF() is associative
4.SF() is same synopsis indempotent

Much easier than proving the unbounded DAG problem!

12

An ODI-Correct synopsis diffusion algorithm
results in a semi-lattice structure.

if z!SF $ x , y%
then SF $ x , z %!z ,
SF $ y , z %!z

Implies that the use of ODI synopsis provides an
implicit acknowledgement of message success.

u z q

13

There are two types of errors that can occur when
using a synopsis diffusion algorithm.

Communication Error

Approximation Error

r1

r3

r2

r4 q
{s1}

{s1} {s1,s3}

{s1,s2}
{r1,r2,r3,r4}

r1

r3

r2

r4 q
{s1}

{s1} {s1,s3}

{s1,s2}
{r1,r2,r3,r4}

Failure

Approximation error: round off, etc

Solved by using a good
routing topology

Easily analyzed by
“centralized model”

14

The authors provide several ODI-Correct synopsis
diffusion algorithms for different types of aggregation.

[Image: Nath et al. Synopsis Diffusion 08]

15

Implicit acknowledgements allow for the
automated adaptation of the routing topology.

[Image: Nath et al. Synopsis Diffusion 08]

16

Evaluation methodology is to simulate and
evaluate performance.

Topology
Querying node at center of grid

Aggregation Schemes
3 separate for the first experiment, and only one for

subsequent experiments
Message size: 48-byte
Transmission Model:

TAG simulator based on empirical data
Accuracy: Root Mean Square (RMS)
Power Consumption: Only include communications

Does this affect the performance of
the other algorithms such as gossip
base?

Limits the breadth of their evaluation

Is a theoretical description
enough to not include
computation issues?

17

Authors use an algorithm for sum from a primary
competing paper by Considine et al.

How does this effect the results?
Is it bad that they use this algorithm?
Is it bad that they only mention this in one line of the

related works section, and not in the evaluation?

18

Evaluation: comparison of aggregation schemes.

[Image: Nath et al. Synopsis Diffusion 08]

19

Evaluation: comparison of aggregation schemes.

[Image: Nath et al. Synopsis Diffusion 08]

If they are using ODI and are
duplicate insensitive: Is it okay to be
using approximation algorithms?

Notice that they are still 200% off in
some cases.

Is 200% realistic?

20

Evaluation: effect of communication/packet loss.

[Image: Nath et al. Synopsis Diffusion 08]

21

Evaluation: effect of deployment density.

[Image: Nath et al. Synopsis Diffusion 08]

22

This paper has the following major contributions:

A general framework to perform synopsis diffusion
algorithm development and evaluation.

Rings overlay topology, and subsequently adaptive
rings topology

Showed that they can develop algorithms for several
aggregation schemes, which is better than related
works.

Successful separation of routing and aggregation
mechanisms.

23

Discussion Questions

Synopsis Diffusion requires a specific implementation
for each routing scheme and aggregation mechanism
What are the limitations of this approach with respect to

scalability and flexibility?
How much of this work is practical? Intuitively it seems

as though there should be higher costs in computation.
Is a 20% loss rate okay for a real application?

24

There are two phases in a synopsis diffusion
algorithm: distribution and aggregation phases

q

Distribution

r1

r3

r2

r4 q
{s1}

{s1} {s1,s3}

{s1,s2}
{r1,r2,r3,r4}

SF(s1, SG(s2)) = s{12}

SF(s1,SG(s3)) = s{13}

SF(s1,SG(s3)) = s{13}
SF(s123,SG(s4)) = s{1234}

Aggregation

Trickle: A Self-Regulating Algorithm for
Code Propagation and Maintenance in

Wireless Sensor Networks

Authors: Philip Levis, Neil Patel, David Culler, Scott Shenker

Presented by: Nathan Dautenhahn and Shameem Ahmed

CS 525 Distributed Systems

March 9, 2010

2

Trickle is a solution to the problem of how to perform
efficient code updates in a wireless sensor network.

! Primary motivations:
! Large scale, must minimize transmission costs
! Application specific transfer protocol
! High transient loss patterns
! Instability of motes
! Cost of propagating code as well as the maintenance

for performing propagation is costly
! Maintenance costs exceed code propagation cost

3

The properties of an efficient sensor network are
as follows:

! Low maintenance costs
! Rapid propagation
! Scalability

4

Trickle uses a “polite gossip” protocol to exchange
code metadata for low cost maintenance.

! Periodically transmits code metadata if it has heard no
such meta data within a given time period

! All messages are sent via broadcast
! Guaranteed code propagation if every mote:

! Receives or transmits data periodically
! Some motes communicate at a threshold minimum

“communication rate”
! In a lossless single hop network of size n, the

communication rate is 1/n

5

The Trickle code propagation routing algorithm:

--- Polite Listening and Response ---

If motex receives metadata == motex_metadata:
 c++
If motex has update for code_x-y:

Broadcast code_x
If motex needs code_x+y:

Broadcast code_x metadata to receive update from y

Init: c = 0; k = 1 or 2; t = [0, T]

If c < k at time t:
 Broadcast motex_metadata

If t==T:
 c = 0
 T = rand(0,T) 0 t T

Polite Listen
Transmit metadata

6

Overcoming basic assumptions:

No Packet Loss

Perfect Time Synchronization

Single-hop Network

Grows with density of network at O(log(n))

! Short listen problem

! Listen only period

O(sqrt(n))

7

Automated variation of T parameter to allow for
rapid propagation with minimal maintenance cost

Rapid
Propagation

Maintenance
Cost

Fast Propagation

Slow Propagation

Extra Messages

Minimal Messages

8

Discussion

! No code propagation: Will this skew the results at all?
Will they just scale up?

! To send code requires a broadcast message: How do
we deal with 100 motes responding with updates?

! Trickle scales to approximately 1000 motes, is this
enough?

! Is the simplicity and success of Trickle worth the
broadcast costs?

	TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks
	Motivations
	TAG
	Language: SQL style query syntax
	Aggregate Functions
	TAG Taxonomy (1/2)
	TAG Taxonomy (2/2)
	TAG Operation
	Illustration: Aggregation
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Simulation Based Evaluation (1/2)
	Simulation Based Evaluation (2/2)
	TAG Performance in Real World
	TAG Optimizations
	Limitations
	Discussions

