
1

CS 525

Advanced Distributed
Systems

Spring 2010

Indranil Gupta (Indy)

Distributed Monitoring

March 30, 2010

All Slides © IG
Acknowledgments: Steve Ko, Jin Liang,

Ahmed Khurshid,Abdullah Al-Nayeem

2

Distributed Applications run over
Many Environments

The Internet

Gnutella peer to peer system

PlanetLab Grids, Datacenters,

Cloud Computing

Distributed applications

•Large scale

1000’s of nodes

•Unreliable

nodes and network

•Churned

node join, leave, failure

3

Management and Monitoring of
Distributed Applications

Monitoring of nodes, system-wide or per-node

• Many applications can benefit from this, e.g.,
– DNS, cooperative caching, CDN, streaming, etc., on PlanetLab

– Web hosting in server farms, data centers, Grid computations, etc.

• A new and important problem direction for next decade
– [CRA03], [NSF WG 05], [IBM, HP, Google, Amazon]

• Goal more end-to-end than cluster or network management

• Today typically constitutes 33% of TCO of distributed
infrastructures
– Will only get worse with consolidation of data centers, and expansion

and use of PlanetLab

4

What do sysadmins want?

• Two types of Monitoring Problems:

I. Instant (on-demand) Queries across node population, requiring up-to-
date answers
– {average, max, min, top-k, bottom-k, histogram etc.}

– for {CPU util, RAM util, disk space util, app. characteristics, etc.}
– E.g., max CPU, top-5 CPU, avg RAM, etc.

II. Long-term Monitoring of node contribution
– availability, bandwidth, computation power, disk space

Requirements:

• Low bandwidth
– For instant queries, since infrequent

– For long-term monitoring, since node investment

• Low memory and computation

• Scalability

• Addresses failures and churn

• Good performance and response

5

Existing Solutions: Bird’s Eye View

CENTRALIZED

DECENTRALIZED

Decentralized

overlays
Instant Queries Long-term monitoring

6

Existing Monitoring Solutions

• Centralized/Infrastructure-based

• Decentralized

7

Existing Monitoring Solutions

• Centralized/Infrastructure-based: user scripts,
CoMon, Tivoli, Condor, server+backend, etc.
– Efficient and enable long-term monitoring

1. Provide stale answers to instant queries (data
collection throttled due to scale)
– CoMON collection: 5 min intervals

– HP OpenView: 6 hours to collect data from 6000 servers!

2. Often require infrastructure to be maintained

– No in-network aggregation

– Could scale better

• Decentralized

8

Existing Monitoring Solutions

• Centralized/Infrastructure-based

• Decentralized: Astrolabe, Ganglia, SWORD,
Plush, SDIMS, etc.

– Nodes organized in an overlay graph, where nodes
maintain neighbors according to overlay rules,
• E.g., distributed hash tables (DHTs) – Pastry-based

• E.g., hierarchy - Astrolabe

– Can answer instant queries but need to be
maintained all the time
• Nodes spend resources on maintaining peers according to

overlay rules => Complex failure repair

– Churn => node needs to change its neighbors to
satisfy overlay rules

– Can you do a quick and dirty overlay, without
maintenance?

9

Another Bird’s Eye View

9

(Data)
Scale

(Attribute
and churn)
Dynamism

Centralized
(e.g., DB)

Scaling
centralized

(e.g., Replicated DB)

Static
(e.g., attr:CPU type)

Dynamic
(e.g., attr: CPU util.)

Centralized
(e.g., DB)

Decentralized

10

MON: Instant Queries for Distributed
System Management

11

MON Query Language

1. select avg(<resource>) [where <condition>]

2. select top k <resource> [where <condition>]

3. select histo(<resource>) [where <condition>]

4. select <resource list> [where <condition>]

5. select grep(<keyword>, <file>) [where <condition>]

6. select run(<shell command>) [where <condition>]

7. count and depth: number of nodes in, and tree-depth of, overlay

8. push <file>

• <resource> = either
– system metric(s), e.g., CPU, RAM, disk, or

– application-based metrics, e.g., average neighbor delay (p2p
streaming), number of neighbors (partitionability of overlay), etc.

• <condition> = any boolean expression over the system resources
– E.g., CPU > 50

12

MON: Management Overlay Networks

Supports

• Instant queries

– Need instaneous
answers

– Inconsistency ok

• push software updates

• Basic Idea: Ephemeral
overlays

1. For each query, build
an overlay on-demand

2. Use overlay to
complete query

3. Do not maintain on-
demand overlay

?

n1

n2

n3

n4

n5

n6

13

Why On-Demand?

Maintained overlays, e.g.,
DHT-based overlays

• maintenance bandwidth

• complex failure repair

On-demand approach is:

• Simple

• Light-weight

• Suited to management

– Sporadic usage

– Amenable to overlay reuse

Maintained Overlays,

e.g., DHT-based
On-demand overlays

Distributed System Management

Overlay Construction

Membership Management

•Management Commands

•On-demand overlay construction

•Each node maintains a small list of neighbors

MON Architecture

14

Membership by Gossip
• Partial membership list at each node (asymmetric)

• Contains random few other nodes; fixed in size (log(N))

• Periodic membership exchange [SCAMP01] [SWIM02] [TMAN04] [CYCLON06]

– Measure delay

– Detect failure: use age (last heard from time) to eliminate old entries -
O(log(N)) time for spreading failure information [EGHKK03, DGHIL85]

• Weakly consistent – may contain stale entries

n1

n2

n3

n4

n5

n6
node

n4

n5

IP:Port

128.X.X.X:6020

192.X.X.X:6020

RTT

90

20

n6 64.X.X.X:6020 30

Membership list at node n3

15

On-demand trees: Randomized Algorithms

• Simple algorithm (randk)
– Each node randomly selects k children from its membership list

– Each child acts recursively

• Improved Algorithm (twostage)
– Membership augmented with list of “nearby” nodes

• Nearby nodes discovered via gossip

– Two stage construction of tree

• First h hops – select random children

• After h hops – select local children

• DAG construction: similar to tree

• Weakly consistent membership list is ok
– Retry prospective children

– Or settle for fewer than k children

16

Tree Building Example

n1

n2

n3

n4

n5

n6

(k=2)

17

Software Push

• Receiver-driven, multi-parent download

• DAG structure helps: bandwidth, latency,
failure-resilience

18

Tree Construction Performance
PlanetLab slice of 330 hosts

Median response time is

less than 1.5 seconds

95% responses in less than

2 seconds

97% coverage

Bandwidth=10 Bps

10 s gossip interval

k=5 children

19

Software Push Bandwidth

DAG median bandwidth

about same as tree

But DAG faster overall

due to replication

PlanetLab slice of 330 hosts

20

Comparison with DHT Tree

Scribe/SDIMS trees built over Pastry DHT. In a PlanetLab slice with 115 nodes.

Pastry takes about twice as long to answer queries, does not ensure

coverage when there are failures (or

spends persistent bandwidth for routing table repair)

21

On-demand vs. Maintained Overlay

• Choice depends on Query Rate = q per second

• Maintained overlay
– Neighbor Maintenance (up to date neighbors) = B Bps

– Per-query cost for k child selection = C Bytes

– Bandwidth = B + q.C

• On-demand approach
– Weakly consistent neighbors = B/m Bps (m > 1)

– Per-query cost = m.C Bytes

– Bandwidth = B/m + q.m.C

• On-demand preferable when: B/m + m.q.C < B + q.C
– q < B/mC

• In MON, B = 10 Bps, and C = 400 Bytes

• On-demand approach preferable for query rates of under one query every
40.4 seconds
– Queries injected by users have think times of several minutes

– Query rate far better than centralized collection tools which have periods of
O(minutes)

– Yet saves bandwidth

Maintained Overlays,

e.g., DHT-based
On-demand overlays

22

Spanning the Spectrum

MON overlays in PlanetLab (325 node slice)

can be reused for up to 6-30 minutes

Maintained Overlays,

e.g., DHT-based
On-demand overlays

Function of max_drop=

Maximum number of

dropped nodes from

overlay that application

can tolerate

(kept track of by MON)

How long can an on-demand

overlay survive without

maintenance?

23

Discussion

• Using partial DHTs to build better on-
demand trees?

• On-demand DHTs?

• On-demand datastructures for anything?

• What about groups that do not span the
entire system?

24

Astrolabe: A Robust and Scalable

Technology for Distributed System

Monitoring, Management, and Data
Mining

25

User Interface

• Query Datacenter as a Database
– SQL queries on the datacenter

• Each server contributes one or more tuples

• E.g.: grep for a file name

– SELECT

COUNT(*) AS file_count

FROM files WHERE name = ‘game.db’

• A “database” = A “Management Information Base”
(MIB)

• Astrolabe = distributed MIB

26

Astrolabe Zone Hierarchy

/uiuc/ece/n1 /uiuc/cs/n4 /uiuc/cs/n6 /cornell/n2 /cornell/cs/n3

/berkeley

/eecs/n5

/berkeley

/eecs/n7

/berkeley

/eecs/n8

/uiuc/ece /uiuc/cs /cornell/cs /berkeley/eecs

/uiuc /cornell /berkeley

/

•Zone ~ domain name

•but customizable

•Zone hierarchy is determined by administrators

•Each host runs Astrolabe agent

27

Astrolabe = Decentralized MIB

uiuc

cornell

berkeley

/uiuc/cs/n4

/uiuc/cs

/uiuc

/

cs

ece

n4

n6

Load = 0.3

Load = 0.5

(Own)

(Own)

(Own)

SELECT MIN(Load) as

Load

Load = 0.3

Time = 121

Time = 101

Time = 130

Other aggregation funcs:

MAX (attribute)

SUM (attribute)

AVG (attribute)

FIRST(n, attribute)

•Updates aggregated
lazily up the tree

•Using a user-defined
aggregation function

28

Astrolabe’s workings a little more complex

/uiuc/ece/n1 /uiuc/cs/n4 /uiuc/cs/n6

/uiuc/ece /uiuc/cs

/uiuc /cornell /berkeley

/

cs

ece

uiuc

cornell

berkeley

… …
n4

n6

Load = 0.1

Load = 0.3

system

process

Load = 0.1 Disk = 1.2TB

Service: A(1.1) progress = 0.7

files

system

process

Load = 0.3 Disk = 0.6TB

Service: A(1.0) progress = 0.5

files

Agent (/uiuc/cs/n6) has local copy of these

ancestor MIBs + MIBs of siblings of these ancestors

Agent (/uiuc/cs/n6) has local copy of these

ancestor MIBs + MIBs of siblings of these ancestors

29

Gossip Protocol

• Conceptually:

– Sibling zones gossip and exchange the MIBs of all their sibling
zones

– This propagates information upwards eventually

• Leaf zone: correspond to actual servers

• Internal node zone: collection of servers in that subtree
zone

• In reality: Each agent, periodically, selects another agent
at random, and exchanges information with it
– If the two agents are in same zone, they exchange MIB

information about that zone

– If in different zones, they exchange MIB information about their
least common ancestor zone

– And then gossip for all ancestor zones
30

Gossip Protocol (continued)

• For efficiency, each zone elects a set of leader servers
to act as representatives of that zone
– Representatives participate in gossip protocol, then propagate

information down to other servers in that zone (also via gossip)

– Agent may be elected to represent multiple zones, but no more
zones than its # ancestors

• How gossip happens at a representative agent:
– Pick a zone (=ancestor) to gossip in

– Pick a child of that ancestor

– Randomly pick one of the contact agents from that zone

– Gossip messages pertaining to MIBs of that zone, and all its
ancestor zones (up to the root)

– Gossip results in merge of entries, based on timestamps
(timestamps assumed global)

31

Etcetera

• Eventual consistency guarantee for data: Each
update eventually is propagated. If updates
cease, everyone converges.

• AFC (aggregation function certificates):
programmable aggregation functions;
propagated throughout system

• Membership protocol: similar to gossip-style
membership + ~ Bimodal Multicast

• Experimental results: simulations; see paper

• Astrolabe (or a variant of it) is rumored to be
running inside Amazon’s EC2/S3 cloud

32

Discussion

• Non-leaf zones: have representative

leaders vs. make all descendants
responsible?

– What are the tradeoffs?

• Up to date-ness of answers to queries?

• Truly on-demand querying system?

• Timestamps assumed to be global – why
may this be ok/not ok?

33

Moara: Flexible and Scalable Group-
Based Querying System

34

Querying Groups of Nodes

PlanetLab slice sizes HP’s Utility Computing

35

Problem and Approach

• Query groups of nodes
– Groups are typically small

– Groups are dynamic

• Groups are specified implicitly, via a predicate

– E.g., ((CPU util < 10%) and (rack = R1)) or (Mem util < 500 MB and
(rack=R2 or rack=R1))

– That is, logical expressions: (A and B) or (C and (D or E))
• Each expression is <attribute op value>

• One approach: flood query. Bad! Especially for repeated queries.

• Moara’s approach:

– Query a small set of servers that would be superset of the group (that is
those matching the predicate)

– For repeated queries, maintain overlay

– Overlay = collection of trees. One tree per basic term (e.g., CPU util <
10%).

– Optimize tree management cost vs. query cost

36

Query Rewriting

• Rewrite query into Conjunctive normal
form (CNF)

– Provably gives lowest number of terms

• Reduce #terms:

– Use covers based on tree size to reduce
terms

• Cover (A and B) = min ((cover(A), cover(B),
cover(A U B))

– Use semantic information

• E.g., CPU < 10% is a subset of CPU < 20%

37

Example Moara Tree

T

F T

T F

T

T F

T: CPU-Util > 50%

F: CPU-Util <= 50%

Key idea: Build one tree per term (or reuse tree for that term if it already exists)

38

Moara’s Tree Maintenance

• Two extreme approaches:
– Never update tree

• Zero management cost, but high query cost (flood)

• May be ok if query rate < churn rate

– Aggressively prune out subtrees that do not satisfy term

• Low query cost, but management cost high if churn rate high

• May be ok if churn rate < query rate

• Query rate is user-based, churn rate is system- and
term-dependent

• Churn rate different for each node �
�need a decentralized protocol for maintaining each part of a

given tree, in order to minimize overall bandwidth utilization

�So you get best of all worlds in terms of bandwidth

39

State Machine at Each Moara node
SAT = This subtree satisfies term (some node in it)

PRUNE = tell parent to not forward queries to this subtree

UPDATE = node will update its PRUNE variable at parent

as satisfiability changes

Adaptation policy is local at each node

Compares bandwidth cost based on:

•Local rate of change in SAT, and

•Local rate of queries seen
40

Emulab (500 instances)

40

Latency (ms) Msg/query

41

Simulation (10,000 instances)

41

Msgs/node

Group Churn
Queries

No tree management,
one global tree

Moara with aggressive
tree management

Moara with adaptive
tree management

42

Discussion

• Tree per term and potentially predicates: too
many trees?
– How do you garbage collect entire trees?

– What information do you need to maintain the right
set of trees?

– Interesting optimization problem!

• What language do sysadmins like to query in?

• Sysadmins often care about how information is
visible visually (e.g., CoMON, Zenoss)
– Automatically inferred queries?

– Artificial Intelligence/Machine Learning techniques to
learn what are the queries sysadmins want most?

43

Questions?

