CS 525

Advanced Distributed
Systems
Spring 2010

Indranil Gupta (Indy)

Distributed Monitoring
March 30, 2010

e eTa Acknoviedgmeris: Steve Ko, JinLiang,
All Slides © IG Anmed Khurshid, Abdullah At Nayeem

Distributed Applications run over
Many Environments

Gnutella peer to peer system

The Internet

Distributed applications

Large scale -
1000’s of nodes e
*Unreliable i {
Cr;]odesda nd network PlanetlLab Grids, Datacenters.
+Churne 5 s,
node join, leave, failure Cloud Computing 2

Management and Monitoring of
Distributed Applications

Monitoring of nodes, system-wide or per-node
+ Many applications can benefit from this, e.g.,
— DNS, cooperative caching, CDN, streaming, etc., on PlanetLab
— Web hosting in server farms, data centers, Grid computations, etc.
* A new and important problem direction for next decade
— [CRAO03], [NSF WG 05], [IBM, HP, Google, Amazon]
+ Goal more end-to-end than cluster or network management
+ Today typically constitutes 33% of TCO of distributed
infrastructures

— Will only get worse with consolidation of data centers, and expansion
and use of PlanetLab

What do sysadmins want?

. Two types of Monitoring Problems:
| Instant (on-demand) Queries across node population, requiring up-to-
date answers
- {average, max, min, top-k, bottom-k, histogram etc.}
— for {CPU util, RAM util, disk space util, app. characteristics, etc.}
- E.g., max CPU, top-5 CPU, avg RAM, etc.
Il. Long-term Monitoring of node contribution
— availability, bandwidth, computation power, disk space
Requirements:
. Low bandwidth
— Forinstant queries, since infrequent
— For long-term monitoring, since node investment
Low memory and computation
Scalability
Addresses failures and churn
Good performance and response

Existing Solutions: Bird's Eye View

CENTRALIZED

Py N

Decentralized

. overlays
Instant Queries Long-term monitoring

DECENTRALIZED

Existing Monitoring Solutions

e Centralized/Infrastructure-based
* Decentralized

Existing Monitoring Solutions

» Centralized/Infrastructure-based: user scripts,
CoMon, Tivoli, Condor, server+backend, etc.
— Efficient and enable long-term monitoring

1. Provide stale answers to instant queries (data
collection throttled due to scale
— CoMON collection: 5 min intervals
— HP OpenView: 6 hours to collect data from 6000 servers!

2. Often require infrastructure to be maintained
— No in-network aggregation
— Could scale better

* Decentralized

Existing Monitoring Solutions

» Centralized/Infrastructure-based

« Decentralized: Astrolabe, Ganglia, SWORD,

Plush, SDIMS, etc.

— Nodes organized in an overlay graph, where nodes
maintain neighbors according to overlay rules,
« E.g., distributed hash tables (DHTs) — Pastry-based
« E.g., hierarchy - Astrolabe

— Can answer instant queries but need to be
maintained all the time
* Nodes spend resources on maintaining peers according to

overlay rules => Complex failure repair

— Churn => node needs to change its neighbors to
satisfy overlay rules

— Can you do a quick and dirty overlay, without 8
maintenance?

Another Bird’s Eye View

(Data) I

Scale Scaling
centralized Decentralized
(e.g., Replicated DB) I

——————— -

Centralized entralized
(e.g., DB) (e.g., DB)
. (Attribute
Static Dynamic = ,p9q churn)
(e.g., attr:CPU type) [e.g., attr: CPU util.) Dynamism

9

MON: Instant Queries for Distributed
System Management

MON Query Language

Application Overlay

select avg(<resource>) [where <condition>] N
select top k <resource> [where <condition>] s.,‘z\m,e!m
select histo(<resource>) [where <condition>] Ll
select <resource list> [where <condition>]

select grep(<keyword>, <file>) [where <condition>]
select run(<shell command>) [where <condition>]
count and depth: number of nodes in, and tree-depth of, overlay
push <file>

Managdment Overlay

v

ONOOAWON =

<resource> = either
— system metric(s), e.g., CPU, RAM, disk, or

- Fplica_tion-based metrics, e.g., average neighbor delay (p2p
streaming), number of neighbors (partitionability of overlay), etc.

<condition> = any boolean expression over the system resources
- E.g.,CPU>50

MON: Management Overlay Networks

Supports
» Instant queries
— Need instaneous
answers
— Inconsistency ok
+ push software updates

» Basic Idea: Ephemeral
overlays

1. For each query, build
an overlay on-demand

2. Use overlay to
complete query

3. Do not maintain on-
demand overlay

Why On-Demand?

On-demand overlays

d

Maintained overlays, e.g., IO A e

DHT-based overlays
* maintenance bandwidth
» complex failure repair
On-demand approach is:
+ Simple
. Light-weight %ﬁanagement Commands

P n-demand overlay construction
* Suited to management *Each node maintains a small list of neighbors
— Sporadic usage

— Amenable to overlay reuse

Distributed System Management

Overlay Construction

/ﬁembership Management

Membership by Gossip

+ Partial membership list at each node (asymmetric)

+ Contains few other nodes; fixed in size (log(N))

» Periodic membership exchange scampot) swimoz) [TMANO4] [CYCLONOG]
— Measure delay

— Detect failure: use age (last heard from time) to eliminate old entries -
O(log(N)) time for spreading failure information [EGHKKO03, DGHIL85]

— may contain stale entries

Membership list at node n3
node IP:Port RTT
n4 | 128.X.X.X:6020 | 90
n5 | 192.X.X.X:6020 | 20
né 64.X.X.X:6020 30

On-demand trees: Randomized Algorithms

» Simple algorithm (randk)
— Each node randomly selects k children from its membership list
— Each child acts recursively
+ Improved Algorithm (twostage)
— Membership augmented with list of “nearby” nodes
+ Nearby nodes discovered via gossip
— Two stage construction of tree
« First h hops — select random children
« After h hops — select local children
+ DAG construction: similar to tree

» Weakly consistent membership list is ok
— Retry prospective children
— Or settle for fewer than k children

Tree Building Example

(k=2)

Software Push

&
‘Gl @ @/l\
Cel A

» Receiver-driven, multi-parent download

* DAG structure helps: bandwidth, latency,
failure-resilience

Tree Construction Performance
PlanetLab slice of 330 hosts
Table 1: Tree construction performance

| rand5 | rand6 | rand8 [twostage |
[coverage | 31480 [31864 [32052 [321590]

o
CDF of count response time for twostage algorithm 97% coverage
1 i

~F—————95% responses in less thar]
Bandwidth=10 Bps 08 2 seconds
10 s gossip interval §os Median response time is
k=5 children 8 @ [less than 1.5 seconds
30 4
0.2] p =
T 2000 2500 3000 18

0 1500
response time (ms)

Software Push Bandwidth

PlanetLab slice of 330 hosts

1CDF of software push bandwidth (20 nodes)

IS4
®

\ -t~ DAG median bandwidth
about same as tree

4
o

o
iy

¥
|» But DAG faster overall
due to replication

o
[N}

percentage of experiments

800 1 1200 1400 1600

f0 e00 000
achieved bandwidth (kbps)

Comparison with DHT Tree

Scribe/SDIMS trees built over Pastry DHT. In a PlanetLab slice with 115 nodes.

. average scribe lree response time Scribe Tree Coverage (number of nodes included
' -

respanse ime (soconds)
Pumber o nodes i each tree

=
Pastry takes about twice as long to a er queries, does not ensure

coverage when there are failures (or

spends persistent bandwidth for routing table repair) 2

On-demand vs. Maintained Overlay

On-demand overlays

d

Choice depends on Query Rate = g per second
Maintained overlay
— Neighbor Maintenance (up to date neighbors) = B Bps
— Per-query cost for k child selection = C Bytes
— Bandwidth =B +q.C
On-demand approach
— Weakly consistent neighbors = B/m Bps (m > 1)
— Per-query cost = m.C Bytes
— Bandwidth = B/m + q@.m.C
On-demand preferable when: B/m + m.q.C <B +q.C
- g<B/mC
In MON, B = 10 Bps, and C = 400 Bytes
On-demand approach preferable for query rates of under one query every
40.4 seconds
— Queries injected by users have think times of several minutes
— Query rate far better than centralized collection tools which have periods of
O(minutes)

— Yet saves bandwidth 21

Spanning the Spectrum

On-demand overlays

ﬁ?

Session life time of tree overlays

1400} ! .
) [Function of max_drop=

Maximum number of

dropped nodes from
_~overlay that application

A can tolerate

(kept track of by MON)

@000 |

life time (second:
g

200 —
0
12 3 7 9 10

22

Discussion

Using partial DHTSs to build better on-
demand trees?

On-demand DHTs?
On-demand datastructures for anything?

What about groups that do not span the
entire system?

23

Astrolabe: A Robust and Scalable

Technology for Distributed System

Monitoring, Management, and Data
Mining

24

User Interface

Query Datacenter as a Database
— SQL queries on the datacenter

Each server contributes one or more tuples
E.g.: grep for a file name

— SELECT
COUNT(*) AS file_count
FROM files WHERE name = ‘game.db’

A “database” = A “Management Information Base”

Astrolabe = distributed MIB

25

Astrolabe Zone Hierarchy

/cornell /berkeley
/uiuc/ece Juiuc/cs /cornell/cs /berkeley/eecs

/ \ Jberkeley /berkeley /berkeley

/n6 Jcornell/n2 Jcornellfcs/n3 Jeecs/nS [eecs/n7 [eecs/n8

«Zone ~ domain name
*but customizable
«Zone hierarchy is determined by administrators
«Each host runs Astrolabe agent 26

Astrolabe = Decentralized MIB

«Updates aggregated

- lazily up the tree
(own) uiuc))
/ cornell *Using a user-defined
berkeley| aggregation function
. (own)

SELECT MIN(Load) as
Juiuc/cs Load
Other aggregation funcs:
MAX (attribute)

SUM (attribute)

AVG (attribute)
FIRST(n, attribute)

27

Astrolabe’s workings a little more complex

g
Agent (/uiuc/cs/n6) has local copy of these ‘ e
ancestor MIBs + MIBs of siblings of these ancestors ‘ s
berkeley,
.
el | fuiue Jcornell /berkeley

|na | ioad=01

Juiuc/ece Juiucfes
1
Juiuc/ece/n1 Juiuc/cs/na Julucfes/ng 1
|

o

R ¢
system Load =0.1 ‘ Disk = 1.2TB system Load =0.3 Disk = 0.678
process Service: A(1.1) progress =0.7 process Service: A{1.0) progress = 0.5
files files

Gossip Protocol

» Conceptually:

— Sibling zones gossip and exchange the MIBs of all their sibling
zones

— This propagates information upwards eventually
» Leaf zone: correspond to actual servers

* Internal node zone: collection of servers in that subtree
zone

 In reality: Each agent, periodically, selects another agent
at random, and exchanges information with it
— If the two agents are in same zone, they exchange MIB
information about that zone
— If in different zones, they exchange MIB information about their
least common ancestor zone

— And then gossip for all ancestor zones
29

Gossip Protocol (continued)

+ For efficiency, each zone elects a set of leader servers
to act as representatives of that zone

— Representatives participate in gossip protocol, then propagate
information down to other servers in that zone (also via gossip)

— Agent may be elected to represent multiple zones, but no more
zones than its # ancestors
» How gossip happens at a representative agent:
— Pick a zone (=ancestor) to gossip in
— Pick a child of that ancestor
— Randomly pick one of the contact agents from that zone

— Gossip messages pertaining to MIBs of that zone, and all its
ancestor zones (up to the root)

— Gossip results in me dqe of entries, based on timestamps
(timestamps assumed global)

30

Etcetera

Eventual consistency guarantee for data: Each
update eventually is propagated. If updates
cease, everyone converges.
AFC (aggregation function certificates):
programmable aggregation functions;
propagated throughout system

: similar to gossip-style
membership + ~ Bimodal Multicast
Experimental results: simulations; see paper

Astrolabe (or a variant of it) is rumored to be
running inside Amazon’s EC2/S3 cloud

31

Discussion

* Non-leaf zones: have representative
leaders vs. make all descendants
responsible?

— What are the tradeoffs?
+ Up to date-ness of answers to queries?
 Truly on-demand querying system?

» Timestamps assumed to be global — why
may this be ok/not ok?

Moara: Flexible and Scalable Group-
Based Querying System

33

Number of nodes

32
Tasks Queries
Resource Allocation|Average utilization for servers belonging to (i) floor F, (ii) cluster C, (iii) rack R
Number of machines/VMs in a given cluster C
VM Migration Average ufilization of VMs running application X version 1 or version 2

List of all VMs running application X and are VMWare based
Count of all VMs/machines running firewall
Count of all VMs running ESX server and Sygate firewall
Dashboard Max response time for Service X
Count of all machines that are up and running Service X
List of version numbers being used for service X
Count of all machines that are in cluster C and running service X.version Y

Auditing/Security

Patch management

1000

180

Adsigned Nodes - 160 | Job0 —
In-Use Nodes ~ ~ Job1
140
120 Job 0 Job 1
100 g g
in
i3y
Y

! U

| 0
0 50 100 150 200 250 300 350 400 0 200 400 600 800 1000 1200 1400}
Slices ranked according to the number of nodes Time (min)

of Machines Used
®
38

PlanetLab slice sizes HP’s Utility Computing

Problem and Approach

Query groups of nodes
— Groups are typically small
— Groups are dynamic
Groups are specified implicitly, via a predicate

- E.g., ((CPU util < 10%) and (rack = R1)) or (Mem util < 500 MB and
(rack=R2 or rack=R1))

— Thatis, logical expressions: (A and B) or (C and (D or E))
« Each expression is <attribute op value>

One approach: flood query. Bad! Especially for repeated queries.
Moara’s approach:

— Query a small set of servers that would be superset of the group (that is
those matching the predicate)

— For repeated queries, maintain overlay

- %/ot;r)lay = collection of trees. One tree per basic term (e.g., CPU util <
o).

— Optimize tree management cost vs. query cost

35

Query Rewriting

* Rewrite query into Conjunctive normal
form (CNF)
— Provably gives lowest number of terms

* Reduce #terms:

— Use covers based on tree size to reduce
terms

» Cover (A and B) = min ((cover(A), cover(B),
cover(A uB))

— Use semantic information
* E.g., CPU < 10% is a subset of CPU < 20%

36

Example Moara Tree

Key idea: Build one tree per term (or reuse tree for that term if it already exists)

T T: CPU-Util > 50%
e F: CPU-Util <= 50%

,1
| &
.
-
[ol

37

Moara’s Tree Maintenance

» Two extreme approaches:

« Zero management cost, but high query cost (flood)
* May be ok if query rate < churn rate
— Aggressively prune out subtrees that do not satisfy term
« Low query cost, but management cost high if churn rate high
* May be ok if churn rate < query rate
* Query rate is user-based, churn rate is system- and
term-dependent
+ Churn rate different for each node ®
> need a decentralized protocol for maintaining each part of a
given tree, in order to minimize overall bandwidth utilization
=>So you get best of all worlds in terms of bandwidth

38

State Machine at Each Moara node

SAT = This subtree satisfies term (some node in it)

PRUNE = tell parent to not forward queries to this subtree

UPDATE = node will update its PRUNE variable at parent
as satisfiability changes

UPDATE NO-UPDATE
NO-SAT T NO-SAT
: NO-PRUNE
ERUNE Decided by
Iy dynamic
SAT 0->1 adaptation policy SAT 1->0
SAT 1->0 SAT 0—>1
] i \
UPDATE \ NO-UPDATE
SAT SAT [S
NO-PRUNE NO-PRUNE

Adaptation policy is local at each node
Compares bandwidth cost based on:
+Local rate of change in SAT, and
+Local rate of queries seen

Emulab (500 instances)

450
400 1000
350 800
Latency (ms) 300 Msg/query
250 600
200
150 400
100
0 | 200
0 0

40

Simulation (10,000 instances)

1200 No tree management,
one gldbal tree

1000 . .
Moara with aggressive

800 |
Msgs/node o tree management

0 T e Yl "

400 | ' T ader}
~"Moara with adapfive

200 |

tree management

0

0500 100:400 200:300 300:200 400:100 500:0 .
- Queries
41

Group Churn

Discussion

» Tree per term and potentially predicates: too
many trees?

— How do you garbage collect entire trees?

— What information do you need to maintain the right
set of trees?

— Interesting optimization problem!
» What language do sysadmins like to query in?
+ Sysadmins often care about how information is
visible visually (e.g., COMON, Zenoss)
— Automatically inferred queries?

— Atrtificial Intelligence/Machine Learning techniques to
learn what are the queries sysadmins want most?

Questions?

L

