
Dynamo: Amazon's Highly
Available Key Value Store

Vivek Kale

 What we are Dealing With

• Amazon is an E-commerce platform with
o millions of customers
o thousands of servers distributed across the world.

• Need to support best-seller lists, shopping carts, customer

preferences, session management, sales rank, product
catalog.

• If one data center goes down, people should still be able
to buy and sell products. If Amazon.com service is down
even for a short time, the business loses large amounts of
money.

Design Requirements
1. Reliability: Even in the face of malfunctioning systems,
software should not malfunction (e.g. customers should not be
charged more to their credit card than they paid).

2. Scalability: To support growth in business and to be agile
in changing market conditions, scalability is extremely
important

3. Performance: Latencies should be very low because of
Service level agreements(SLA).

4. Availability: A small period of downtime can hurt a
corporation like Amazon financially and also diminish trust of
customers.

Design of Dynamo

Primary Considerations:
1. Lose Strong Consistency for the sake of High Availability
2. Conflict resolution is always executed during read, rather
than during a write. No writes are lost.

Some other considerations

1. Incremental scalability
2. Symmetry
3. Decentralization
4. Heterogeneity

Related Work

• Peer to Peer Systems : Chord ensures that queries can be answered in a bounded
number of hops. OceanStore resolves conflicts through processing a series of
updates and finding a total order among them.

• Distributed File Systems: Google File System, Coda

• Relational Databases: Not capable of handling network partitions, uses strong

consistency, and very expensive.

• Dynamo differs in the following ways:
 1. Always writeable
 2. Single Administrative domain
 3. Support for hierarchical namespaces not required
 4. Built for "latency sensititive" applications. Read and write operations should be
performed within a 2-3 milliseconds ("zero-hop DHT")

Service-Level Agreements

A large number of dependencies mean that latencies of
each component should be even lower.

Design Techniques and Advantages

Dynamo uses the right balance of fundamental
techniques for a very large-scale distributed system

Partitioning Algorithm and Replication

1. Consistent hashing: the range of a hash function is
treated as a ring.

2. ”Virtual Nodes”: Each node might be responsible for
more than one virtual node.

3. Data is replicated at N hosts and contains a preference
list. This is a list of nodes that is responsible for storing a
particular key.

Execution of Get() and Put()

Two separate Approaches:

Approach 1: Each request is routed through a load balancer.
A node is selected based on this load information.

Approach 2: Partition-aware library routes requests directly to
the appropriate coordinator nodes.

Terminology

N: Top most healthy/preferred nodes in the system

R: Minimum number of nodes that participate in a successful
read operation.

W: Minimum Number of nodes that participate in a successful
write operation.

coordinator: a node designated to handle a read or write
operation.

Consistency Protocol: Strict Quorum

o Read and write operations involve the first N nodes in a
preference list.

o The ratio of R to W is the minimum number of nodes that
must participate in a successful read/write operation.

o Latency of a get()/put() operation is dependent on the
slowest of the R or W replica nodes.

o R and W are usually configured to be below N, but R+W
is set to be greater than N

An Improvement: Sloppy Quorum

• To ensure availability, Dynamo uses a sloppy quorum: all

read and write operations are on the first N healthy nodes,
skipping some nodes on the consistent hashing rings.

• Dynamo uses Hinted Handoff, where a node that is
temporarily down, the data is handed off to another
healthy node with a hint that the data should be redirected
to the original recipient.

• Nodes stored these replicas in their local database which
is scanned periodically.

• The preference list of a key is created so that the objects
are replicated across multiple data centers.

• If one data center is down, the read and write operations
can still succeed.

Versioning Using Vector Clocks

• Every version of every object is
associated with one vector clock.

• A vector clock consist of a list of
elements <node, counter>

• Rule: If the counters on the first
object’s clock less than all of the
counters of the nodes in the
second clock, then the first node
is an ancestor of the second.

• Thus, the first node can be
eliminated.

Average Latencies for Reads/Writes

1. There is a significant difference
between daytime and nighttime
request rates (which they refer to
as “di-urnal”)

2. Write latencies are higher than
read latencies because writes
always result in disk access.

3. The 99th percentile latencies
are much higher (about 100 times
larger) than the average latencies.

4. Also, it is interesting to note the
latency variation for reads is
much higher than latency variation
of writes

 Buffered and Non-Buffered Writes

1. Buffering writes for objects lowers
latency by factor of 5, even for a small
1000-object buffer.

2. Buffering also reduces performance
variations.

3. However, server crashes can result in
missing writes queued in buffer.

4. To reduce this durability risk, the
coordinator chooses one of N replicas to
perform a durable write.

Fraction of Nodes out of Balance
1.The number of nodes out-of-
balance(imbalance ratio)
decreases with increasing request
load.

2. Explanation for high loads:
many popular keys are accessed.
Due to uniform distribution of keys,
load is evenly distributed.

3. Explanation for low loads:
fewer popular keys are accessed,
giving higher load imbalance.

Conclusions
• Dynamo combines different fundamental techniques of

distributed systems to achieve scalability and reliability.

• Its credibility is shown through its success in a challenging
e-commerce application environments

• The "eventually-consistent" storage system can be a basis
for many other highly available applications.

• Dynamo can be extended to provide for many further
optimizations, particularly with the constantly changing
demands in industry.

Discussion

 1. Would this be applicable to other applications and other ccntexts?
What would the values of N,R, W be for them?

2. Are there better methods than Merkle trees? Are the storage
requirements adequate?

3. Is the synthesis of the many different techniques the contribution?
Or is there one particular technique that stands out?

4. Why do you think Dynamo allows the number of read (R)
and written (W) replicas to be configured? How can one tune R and W
to be sure to "eventually" have consistency?

